Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reasoning About States of Probabilistic Sequential Programs

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

A complete and decidable propositional logic for reasoning about states of probabilistic sequential programs is presented. The state logic is then used to obtain a sound Hoare-style calculus for basic probabilistic sequential programs. The Hoare calculus presented herein is the first probabilistic Hoare calculus with a complete and decidable state logic that has truth-functional propositional (not arithmetical) connectives. The models of the state logic are obtained exogenously by attaching sub-probability measures to valuations over memory cells. In order to achieve complete and recursive axiomatization of the state logic, the probabilities are taken in arbitrary real closed fields.

Supported by FCT and FEDER through POCI via CLC QuantLog POCI/MAT/ 55796/2004 Project. Additional support for Rohit Chadha came from FCT and FEDER grant SFRH/BPD/26137/2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Information and Computation 112(1), 1–36 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In: FOCS 2000: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 547. IEEE Computer Society Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  3. Basu, S., Pollack, R., Marie-Françoise, R.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  4. Chadha, R., Mateus, P., Sernadas, A.: Reasoning about quantum imperative programs. Electronic Notes in Theoretical Computer Science 158, 19–40 (2006) (Invited talk at the Twenty-Second Conference on the Mathematical Foundations of Programming Semantics)

    Article  Google Scholar 

  5. Chadha, R., Mateus, P., Sernadas, A., Sernadas, C.: Extending classical logic for reasoning about quantum systems. CLC, Department of Mathematics, Instituto Superior Técnico (preprint, 2005) (Invited submission to the Handbook of Quantum Logic)

    Google Scholar 

  6. den Hartog, J.I., de Vink, E.P.: Verifying probabilistic programs using a hoare like logic. International Journal of Foundations of Computer Science 13(3), 315–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1-2), 78–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feldman, Y.A.: A decidable propositional dynamic logic with explicit probabilities. Information and Control 63(1/2), 11–38 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. Journal of Computer and System Sciences 28, 193–215 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1995)

    Article  Google Scholar 

  11. Hoare, C.: An axiomatic basis for computer programming. Communications of the ACM 12, 576–583 (1969)

    Article  MATH  Google Scholar 

  12. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  13. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: 12th Annual IEEE Symposium on Logic in Computer Science (LICS 1997), pp. 111–122 (1997)

    Google Scholar 

  14. Jones, C.: Probabilistic Non-determinism. PhD thesis, U. Edinburgh (1990)

    Google Scholar 

  15. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pp. 186–195. IEEE Computer Society Press, Los Alamitos (1989)

    Chapter  Google Scholar 

  16. Kozen, D.: Semantics of probabilistic programs. Journal of Computer System Science 22, 328–350 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kozen, D.: A probabilistic PDL. Journal of Computer System Science 30, 162–178 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Makowsky, J.A., Tiomkin, M.L.: Probabilistic propositional dynamic logic (manuscript, 1980)

    Google Scholar 

  19. Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Information and Computation (to appear)

    Google Scholar 

  20. Mateus, P., Sernadas, A., Sernadas, C.: Exogenous semantics approach to enriching logics. In: Essays on the Foundations of Mathematics and Logic. Advanced Studies in Mathematics and Logic, vol. 1, pp. 165–194. Polimetrica (2005)

    Google Scholar 

  21. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems 18(3), 325–353 (1996)

    Article  Google Scholar 

  22. Moshier, M.A., Jung, A.: A logic for probabilities in semantics. In: Bradfield, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 216–231. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Narasimha, M., Cleaveland, W.R., Iyer, P.: Probabilistic temporal logics via the modal mu-calculus. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 288–305. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nilsson, N.J.: Probabilistic logic revisited. Artificial Intelligence 59(1-2), 39–42 (1993)

    Article  MathSciNet  Google Scholar 

  26. Parikh, R., Mahoney, A.: A theory of probabilistic programs. In: Proceedings of the Carnegie Mellon Workshop on Logic of Programs. LNCS, vol. 64, pp. 396–402. Springer, Heidelberg (1983)

    Google Scholar 

  27. Ramshaw, L.H.: Formalizing the analysis of algorithms. PhD thesis, Stanford University (1979)

    Google Scholar 

  28. Reif, J.H.: Logics for probabilistic programming (extended abstract). In: STOC 1980: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 8–13 (1980)

    Google Scholar 

  29. Tix, R., Keimel, K., Plotkin, G.D.: Semantic domains for combining probability and non-determinism. Electronic Notes in Theoretical Computer Science 129, 1–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chadha, R., Mateus, P., Sernadas, A. (2006). Reasoning About States of Probabilistic Sequential Programs. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_16

Download citation

  • DOI: https://doi.org/10.1007/11874683_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics