Reasoning About States of Probabilistic
Sequential Programs*

R. Chadha, P. Mateus, and A. Sernadas

SQIG — IT and IST, Portugal
{rch, pmat, acs}@math.ist.utl.pt

Abstract. A complete and decidable propositional logic for reasoning
about states of probabilistic sequential programs is presented. The state
logic is then used to obtain a sound Hoare-style calculus for basic prob-
abilistic sequential programs. The Hoare calculus presented herein is the
first probabilistic Hoare calculus with a complete and decidable state
logic that has truth-functional propositional (not arithmetical) connec-
tives. The models of the state logic are obtained exogenously by attach-
ing sub-probability measures to valuations over memory cells. In order
to achieve complete and recursive axiomatization of the state logic, the
probabilities are taken in arbitrary real closed fields.

1 Introduction

Reasoning about probabilistic systems is very important due to applications
of probability in distributed systems, security, reliability, and randomized and
quantum algorithms. Logics supporting such reasoning have branched in two
main directions. Firstly, Hoare-style [27/21)J6] and dynamic logics [917] have been
developed building upon denotational semantics of probabilistic programs [16].
The second approach enriches temporal modalities with probabilistic bounds
[10,13,23].

Our work is in the area of Hoare-style reasoning about probabilistic sequential
programs. A Hoare assertion [I1] is a triple of the form {&1} s {2} meaning that
if program s starts in state satisfying the state assertion formula &; and s halts
then s ends in a state satisfying the state transition formula &;. The formula &;
is known as the pre-condition and the formula & is known as the post-condition.
For probabilistic programs the development of Hoare logic has taken primarily
two different paths. The common denominator of the two approaches is forward
denotational semantics of sequential probabilistic programs [16]: program states
are (sub)-probability measures over valuations of memory cells and denotations
of programs are (sub)-probability transformations.

The first sound Hoare logic for probabilistic programs was given in [27]. The
state assertion language is truth-functional, i.e., the formulas of the logic are in-
terpreted as either true and false and the truth value of a formulas is determined

* Supported by FCT and FEDER through POCI via CLC QuantLog POCI/MAT/
55796/2004 Project. Additional support for Rohit Chadha came from FCT and
FEDER grant SFRH/BPD/26137/2005.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 240-255] 2006.
© Springer-Verlag Berlin Heidelberg 2006



Reasoning About States of Probabilistic Sequential Programs 241

by the truth values of the sub-formulas. The state assertion language in [27] con-
sists of two levels: one classical state formulas v interpreted over the valuations
of memory cells and the second probabilistic state formulas £ which interpreted
over (sub)-probability measures of the valuations. The state assertion language
contain terms ([7y) representing probability of v being true. The language at
the probabilistic level is extremely restrictive and is built from term equality
using conjunction. Furthermore, the Hoare rule for the alternative if-then-else is
incomplete and even simple valid assertions may not be provable.

The reason for incompleteness of the Hoare rule for the alternative composi-
tion in [27] as observed in [27/[I7] is that the Hoare rule tries to combine absolute
information of the two alternates truth-functionally to get absolute information
of the alternative composition. This fails because the effects of the two alterna-
tives are not independent. In order to avoid this problem, a probabilistic dynamic
logic is given in [I7] with an arithmetical state assertion logic: the state formu-
las are interpreted as measurable functions and the connectives are arithmetical
operations such as addition and subtraction.

Inspired by the dynamic logic in [I7], there are several important works in
the probabilistic Hoare logic, e.g. [I4,21], in which the state formulas are either
measurable functions or arithmetical formulas interpreted as measurable func-
tions. Intuitively, the Hoare triple {f} s{g} means that the expected value of
the function g after the execution of s is at least as much as the expected value
of the function f before the execution. Although research in probabilistic Hoare
logic with arithmetical state logics has yielded several interesting results, the
Hoare triples themselves do not seem very intuitive. A high degree of sophisti-
cation is required to write down the Hoare assertions needed to verify relatively
simple programs. For this reason, it is worthwhile to investigate Hoare logics
with truth-functional state logics.

A sound Hoare logic with a truth-functional state logic was presented in [6]
and completeness for a fragment of the Hoare-logic is shown for iteration-free
programs. In order to deal with alternative composition, a probabilistic sum
construct (£ +&2) is introduced in [6]. Intuitively, the formula (&;4&2) is satisfied
by a (sub)-probability measure p if pu can be be written as the sum of two
measures p7 and po which satisfy & and & respectively. The drawback of [6]
is that no axiomatization is given for the state assertion logic. The essential
obstacle in achieving a complete axiomatization for the state language in [0] is
the probabilistic sum construct.

This paper addresses the gap between [27] and [6] and provides a sound Hoare
logic for iteration-free probabilistic programs with a truth-functional state as-
sertion logic. Our main contribution is that the Hoare logic herein is the first
sound probabilistic Hoare logic with a truth-functional state assertion logic that
enjoys a complete and decidable axiomatization.

We tackle the Hoare rule for the alternative composition in two steps. The first
step is that our alternative choice construct is a slight modification of the usual
if-then-else construct: we mark a boolean memory variable bm with the choice
taken at the end of the execution of the conditional branch. Please note that this



