Abstract
Based on the previous introduced Quantum-behaved Particle Swarm Optimization (QPSO), in this paper, a revised QPSO with novel iterative equation is proposed. While the iterative equation in the QPSO is educed from exponential distribution, the novel one derives from the distribution function of the sum of two random variables with exponential and normal distribution, respectively. The Revised QPSO also maintains the mean best position of the swarm as in the previous QPSO to make the swarm more efficient in global search. The experiment results on benchmark functions show that Revised QPSO has stronger global search ability than QPSO and PSO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philoso-phy and performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, Piscataway, pp. 84–89 (1998)
Van den Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD Thesis. University of Pretoria, South Africa (2001)
Clerc, M.: The Swarm and Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, Piscataway, pp. 1951–1957 (1999)
Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithm and Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan (1975)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE 1995 International Conference on Neural Networks, IV, pp. 1942–1948 (1995)
Kennedy, J.: Small worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1931–1938 (1999)
Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. 1999 Congress on Evolutionary Computation, Piscataway, pp. 1958–1962 (1999)
Sun, J., Feng, B., Xu, W.-B.: Particle Swarm Optimization with Particles Having Quantum Behavior. In: Proc. 2004 Congress on Evolutionary Computation, Piscataway, pp. 325–331 (2004)
Sun, J., Xu, W.-B., Feng, B.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. In: Proc. 2004 IEEE Conference on Cybernetics and Intelligent Sys-tems, Singapore, pp. 111–115 (2004)
Sun, J., Xu, W.-B., Feng, B.: Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level. In: Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics, Piscataway, NJ, pp. 3049–3054 (2005)
Shi, Y., Eberhart, R.: Empirical Study of Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1945–1950 (1999)
Shi, Y., Eberhart, R.C.: A Modified Particle Swarm. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sun, J., Xu, W., Fang, W. (2006). Quantum-Behaved Particle Swarm Optimization with a Hybrid Probability Distribution. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_78
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)