Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum-Behaved Particle Swarm Optimization with a Hybrid Probability Distribution

  • Conference paper
PRICAI 2006: Trends in Artificial Intelligence (PRICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4099))

Included in the following conference series:

Abstract

Based on the previous introduced Quantum-behaved Particle Swarm Optimization (QPSO), in this paper, a revised QPSO with novel iterative equation is proposed. While the iterative equation in the QPSO is educed from exponential distribution, the novel one derives from the distribution function of the sum of two random variables with exponential and normal distribution, respectively. The Revised QPSO also maintains the mean best position of the swarm as in the previous QPSO to make the swarm more efficient in global search. The experiment results on benchmark functions show that Revised QPSO has stronger global search ability than QPSO and PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.J.: Evolutionary Optimization Versus Particle Swarm Optimization: Philoso-phy and performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, Piscataway, pp. 84–89 (1998)

    Google Scholar 

  3. Van den Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD Thesis. University of Pretoria, South Africa (2001)

    Google Scholar 

  4. Clerc, M.: The Swarm and Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, Piscataway, pp. 1951–1957 (1999)

    Google Scholar 

  5. Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  6. Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithm and Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan (1975)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE 1995 International Conference on Neural Networks, IV, pp. 1942–1948 (1995)

    Google Scholar 

  9. Kennedy, J.: Small worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1931–1938 (1999)

    Google Scholar 

  10. Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. 1999 Congress on Evolutionary Computation, Piscataway, pp. 1958–1962 (1999)

    Google Scholar 

  11. Sun, J., Feng, B., Xu, W.-B.: Particle Swarm Optimization with Particles Having Quantum Behavior. In: Proc. 2004 Congress on Evolutionary Computation, Piscataway, pp. 325–331 (2004)

    Google Scholar 

  12. Sun, J., Xu, W.-B., Feng, B.: A Global Search Strategy of Quantum-behaved Particle Swarm Optimization. In: Proc. 2004 IEEE Conference on Cybernetics and Intelligent Sys-tems, Singapore, pp. 111–115 (2004)

    Google Scholar 

  13. Sun, J., Xu, W.-B., Feng, B.: Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level. In: Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics, Piscataway, NJ, pp. 3049–3054 (2005)

    Google Scholar 

  14. Shi, Y., Eberhart, R.: Empirical Study of Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1945–1950 (1999)

    Google Scholar 

  15. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Xu, W., Fang, W. (2006). Quantum-Behaved Particle Swarm Optimization with a Hybrid Probability Distribution. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36668-3_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36667-6

  • Online ISBN: 978-3-540-36668-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics