Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison between genetic algorithms and particle swarm optimization

  • Conference paper
  • First Online:
Evolutionary Programming VII (EP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Included in the following conference series:

Abstract

This paper compares two evolutionary computation paradigms: genetic algorithms and particle swarm optimization. The operators of each paradigm are reviewed, focusing on how each affects search behavior in the problem space. The goals of the paper are to provide additional insights into how each paradigm works, and to suggest ways in which performance might be improved by incorporating features from one paradigm into the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, L., Ed. (1991), Handbook of Genetic Algorithms, New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  2. Eberhart, R. C., Dobbins, R. W., and Simpson, P. K. (1996), Computational Intelligence PC Tools, Boston: Academic Press.

    Google Scholar 

  3. Eberhart, R. C., and Kennedy, J. (1995), A new optimizer using particle swarm theory, Proc. Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 39–43.

    Google Scholar 

  4. Fogel, L. J. (1994), Evolutionary programming in perspective: the top-down view, in Computational Intelligence: Imitating Life, J.M. Zurada, R. J. Marks II, and C. J. Robinson, Eds., IEEE Press, Piscataway, NJ.

    Google Scholar 

  5. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Reading MA: Addison-Wesley.

    Google Scholar 

  6. Kennedy, J., and Eberhart, R. C. (1995), Particle swarm optimization, Proc. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, IV: 1942–1948.

    Google Scholar 

  7. Kennedy, J. (1997), The particle swarm: social adaptation of knowledge, Proc. IEEE International Conference on Evolutionary Computation (Indianapolis, Indiana), IEEE Service Center, Piscataway, NJ, 303–308.

    Google Scholar 

  8. Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA: MIT Press.

    Google Scholar 

  9. Rechenberg, I. (1994), Evolution strategy, in Computational Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and C. Robinson, Eds., IEEE Press, Piscataway, NJ.

    Google Scholar 

  10. Shi, Y. H., Eberhart, R. C., (1998), A modified particle swarm optimizer, Proc. of 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, in press.

    Google Scholar 

  11. Shi, Y. H., Eberhart, R. C., (1998), Parameter selection in particle swarm optimization, Proc. EP98: The 7th Ann. Conf. on Evolutionary Programming, San Diego, CA, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eberhart, R.C., Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040812

Download citation

  • DOI: https://doi.org/10.1007/BFb0040812

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics