Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Pattern-Based Approach to Conceptual Clustering in FOL

  • Conference paper
Conceptual Structures: Inspiration and Application (ICCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4068))

Included in the following conference series:

Abstract

This paper presents a novel approach to Conceptual Clustering in First Order Logic (FOL) which is based on the assumption that candidate clusters can be obtained by looking for frequent association patterns in data. The resulting method extends therefore the levelwise search method for frequent pattern discovery. It is guided by a reference concept to be refined and returns a directed acyclic graph of conceptual clusters, possibly overlapping, that are subconcepts of the reference one. The FOL fragment chosen is \(\mathcal{AL}\)-log, a hybrid language that merges the description logic \(\mathcal{ALC}\) and the clausal logic Datalog. It allows the method to deal with both structural and relational data in a uniform manner and describe clusters determined by non-hierarchical relations between the reference concept and other concepts also occurring in the data. Preliminary results have been obtained on Datalog data extracted from the on-line CIA World Fact Book and enriched with a \(\mathcal{ALC}\) knowledge base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May, 2001)

    Google Scholar 

  2. Bisson, G.: Conceptual Clustering in a First Order Logic Representation. In: Neumann, B. (ed.) ECAI 1992. Proceedings of the 10th European Conference on Artificial Intelligence, pp. 458–462. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  3. Bournaud, I., Ganascia, J.-G.: Conceptual Clustering of Complex Objects: A Generalization Space based Approach. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 173–187. Springer, Heidelberg (1995)

    Google Scholar 

  4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)

    Google Scholar 

  5. Clerkin, P., Cunningham, P., Hayes, C.: Ontology discovery for the semantic web using hierarchical clustering. In: Stumme, G., Hotho, A., Berendt, B. (eds.) Working Notes of the ECML/PKDD-2001 Workshop on Semantic Web Mining, pp. 1–12 (2001)

    Google Scholar 

  6. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)

    Article  Google Scholar 

  7. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept Formation in Expressive Description Logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artificial Intelligence 40(1-3), 11–61 (1989)

    Article  Google Scholar 

  9. Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE Transactions on Knowledge and Data Engineering 11(5) (1999)

    Google Scholar 

  10. Ketterlin, A., Gançarski, P., Korczak, J.J.: Conceptual Clustering in Structured Databases: A Practical Approach. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pp. 180–185 (1995)

    Google Scholar 

  11. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(1), 193–217 (1994)

    Article  MATH  Google Scholar 

  12. Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)

    Article  MATH  Google Scholar 

  15. Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  17. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: an artificial intelligence approach, vol. I. Morgan Kaufmann, San Mateo, CA (1983)

    Google Scholar 

  18. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  19. Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic generation of ontology for scholarly semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 726–740. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: a goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)

    Article  Google Scholar 

  23. Thomson, K., Langley, P.: Concept formation in structured domains. In: Fisher, D.H., Pazzani, M.J., Langley, P. (eds.) Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  24. Vrain, C.: Hierarchical conceptual clustering in a first order representation. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 643–652. Springer, Heidelberg (1996)

    Google Scholar 

  25. Xiong, H., Steinbach, M., Ruslim, A., Kumar, V.: Characterizing pattern based clustering. Technical Report TR 05-015, Dept. of Computer Science and Engineering, University of Minnesota, Minneapolis, USA (2005)

    Google Scholar 

  26. Xiong, H., Steinbach, M., Tan, P.-N., Kumar, V.: Hicap: Hierarchical clustering with pattern preservation. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) Proc. of the 4th SIAM Int. Conference on Data Mining (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lisi, F.A. (2006). A Pattern-Based Approach to Conceptual Clustering in FOL. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds) Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science(), vol 4068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787181_25

Download citation

  • DOI: https://doi.org/10.1007/11787181_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35893-0

  • Online ISBN: 978-3-540-35902-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics