Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Logic Framework for the Incremental Inductive Synthesis of Datalog Theories

  • Conference paper
  • First Online:
Logic Program Synthesis and Transformation (LOPSTR 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1463))

Abstract

This paper presents a logic framework for the incremental inductive synthesis of Datalog theories. It allows us to cast the problem as a process of abstract diagnosis and debugging of an incorrect theory. This process involves a search in a space, whose algebraic structure (conferred by the notion of object identity) makes easy the definition of algorithms that meet several properties which are deemed as desirable from the point of view of the theoretical computer science. Such algorithms embody two ideal refinement operators, one for generalizing incomplete clauses, and the other one for specializing inconsistent clauses.

These algorithms have been implemented in INCR/H, an incremental learning system whose main characteristic consists of the capability of extending autonomously the search to the space of Datalog¬ clauses, when no correct theories exist in the space of Datalog clauses. Experimental results show that INCR/H is able to cope effectively and efficiently with the real-world task of document understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ceri, S., Gottlob, G., and Tanca, L.: Logic Programming and Databases. Springer-Verlag, Berlin Heidelberg New York (1990)

    Google Scholar 

  2. Esposito, F., Malerba, D., and Semeraro, G.: Automated Acquisition of Rules for Document Understanding. Proceedings of the 2nd International Conference on Document Analysis and Recognition ICDAR93. IEEE Computer Society Press, Los Alamitos, CA (1993) 650–654

    Chapter  Google Scholar 

  3. Esposito, F., Malerba, D., and Semeraro, G.: Multistrategy Learning for Document Recognition. Applied Artificial Intelligence: An Int. J. 8 (1994) 33–84

    Article  Google Scholar 

  4. Esposito, F., Malerba, D., Semeraro, G., Brunk, C., and Pazzani, M.: Traps and Pitfalls when Learning Logical Definitions from Relations. In: Ras, Z.W., Zemankova, M. (eds.): Methodologies for Intelligent Systems. Lecture Notes in Artificial Intelligence, Vol. 869. Springer-Verlag, Berlin Heidelberg New York (1994) 376–385

    Google Scholar 

  5. Esposito, F., Laterza, A., Malerba, D., and Semeraro, G.: Locally Finite, Proper and Complete Operators for Refining Datalog Programs. In: Ras, Z.W., Michalewicz, M. (eds.): Foundations of Intelligent Systems. Lecture Notes in Artificial Intelligence, Vol. 1079. Springer-Verlag, Berlin Heidelberg New York (1996) 468–478

    Google Scholar 

  6. Hayes-Roth, F., and McDermott, J.: Knowledge acquisition from structural descriptions. Proceed. of the 5th International Joint Conference on AI. Cambridge, MA (1977) 356–362

    Google Scholar 

  7. Helft, N.: Inductive Generalization: A Logical Framework. In: Bratko, I., Lavrac, N. (eds.): Progress in Machine Learning. Sigma Press, Wilmslow (1987) 149–157

    Google Scholar 

  8. Jaffar, J., and Maher, M.J.: Constraint Logic Programming: a Survey. J. Logic Programming 19 (1994) 503–581

    Article  MathSciNet  Google Scholar 

  9. Kanellakis, P.C.: Elements of Relational Database Theory. In: Van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Volume B, Formal Models and Semantics. Elsevier Science Publishers (1990) 1073–1156

    Google Scholar 

  10. Komorowski, J., and Trcek, S.: Towards Refinement of Definite Logic Programs. In: Ras, Z.W., Zemankova, M. (eds.): Methodologies for Intelligent Systems. Lecture Notes in Artificial Intelligence, Vol. 869. Springer-Verlag, Berlin Heidelberg New York (1994) 315–325

    Google Scholar 

  11. Lloyd, J.W.: Foundations of Logic Programming. 2nd edn. Springer-Verlag, Berlin Heidelberg New York (1987)

    MATH  Google Scholar 

  12. Orkin, M., and Drogin, R.: Vital Statistics. McGraw-Hill, New York (1990)

    Google Scholar 

  13. Plotkin, G.D.: A Note on Inductive Generalization. In: Meltzer, B., Michie, D. (eds.): Machine Intelligence 5. Edinburgh University Press (1970) 153–163

    Google Scholar 

  14. Plotkin, G.D.: Building-in Equational Theories. In: Meltzer, B., Michie, D. (eds.): Machine Intelligence 7. Edinburgh University Press (1972) 73–90

    Google Scholar 

  15. Reiter, R.: Equality and domain closure in first order databases. J. ACM 27 (1980) 235–249

    Article  MATH  MathSciNet  Google Scholar 

  16. Semeraro, G., Esposito, F., Malerba, D., Brunk, C., and Pazzani, M.: Avoiding Non-Termination when Learning Logic Programs: A Case Study with FOIL and FOCL. In: Fribourg, L., Turini, F. (eds.): Logic Program Synthesis and Transformation-Meta-Programming in Logic. Lecture Notes in Computer Science, Vol. 883. Springer-Verlag, Berlin Heidelberg New York (1994) 183–198

    Google Scholar 

  17. Semeraro, G., Esposito, F., Fanizzi, N., and Malerba, D.: Revision of Logical Theories. In: Gori, M., Soda, G. (eds.): Topics in Artificial Intelligence. Lecture Notes in Artificial Intelligence, Vol. 992. Springer-Verlag, Berlin Heidelberg New York (1995) 365–376

    Google Scholar 

  18. Semeraro, G., Esposito, F., and Malerba, D.: Ideal Refinement of Datalog Programs. In: Proietti, M. (ed.): Logic Program Synthesis and Transformation. Lecture Notes in Computer Science, Vol. 1048. Springer-Verlag, Berlin Heidelberg New York (1996) 120–136

    Google Scholar 

  19. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., and Ferilli, S.: Machine Learning + On-line Libraries = IDL. In: Peters, C., Thanos, C. (eds.): Research and Advanced Technology for Digital Libraries. Lecture Notes in Computer Science, Vol. 1324. Springer-Verlag, Berlin Heidelberg New York (1997) 195–214

    Chapter  Google Scholar 

  20. van der Laag, P.R.J., and Nienhuys-Cheng, S.-H.: A Note on Ideal Refinement Operators in Inductive Logic Programming. In: Wrobel, S. (ed.): Proceedings of the Fourth International Workshop on Inductive Logic Programming ILP-94. GMD-Studien Nr. 237 (1994) 247–260

    Google Scholar 

  21. van der Laag, P.R.J., and Nienhuys-Cheng, S.-H.: Existence and Nonexistence of Complete Refinement Operators. In: Bergadano, F., De Raedt, L. (eds.): Machine Learning: ECML-94-Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, Vol. 784. Springer-Verlag, Berlin Heidelberg New York (1994) 307–322

    Google Scholar 

  22. van der Laag, P.R.J.: An Analysis of Refinement Operators in Inductive Logic Programming. Ph.D. dissertation, Tinbergen Institute Research Series (1995)

    Google Scholar 

  23. VanLehn, K.: Efficient Specialization of Relational Concepts. Machine Learning 4 (1989) 99–106

    Google Scholar 

  24. Wrobel, S.: On the proper definition of minimality in specialization and theory revision. In: Brazdil, P.B. (ed.): Machine Learning: ECML-93-Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, Vol. 667. Springer-Verlag, Berlin Heidelberg New York (1993) 65–82

    Google Scholar 

  25. Wrobel, S.: Concept Formation and Knowledge Revision. Kluwer Academic Publishers, Dordrecht Boston London (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S. (1998). A Logic Framework for the Incremental Inductive Synthesis of Datalog Theories. In: Fuchs, N.E. (eds) Logic Program Synthesis and Transformation. LOPSTR 1997. Lecture Notes in Computer Science, vol 1463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49674-2_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-49674-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65074-4

  • Online ISBN: 978-3-540-49674-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics