Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Interpolation Method with Fractal Curves

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

Classic interpolation methods using polynominals or other functions for reconstruction complex dependences or contours perform their role well in the case of smooth and relatively regular curves. However, many shapes found in nature or dynamic relations corresponding to real process are of very irregular character and the appropriate characteristics are rough and demonstrate a complex structure at difference scales. This type of curves are numbered among fractals or stochastic fractals – multifractals. In practice it is impossible to approximate them with the help of classic methods. It is necessary to use fractal methods for the interpolation. At present the only group of this type of methods are the ones based on fractal interpolation functions (FIFs) suggested by Barnsley [1]. However, these methods are burdened with numerous inadequacies making it difficult to use them in practice. The study presents another alternative method of using fractal curves for complex curves approximation. This method is more adequate than FIF for multifractal structures interpolation. It generalizes classic notion of an interpolation knot and introduces non-local values for its description, as for instance fractal dimension. It also suggests continuous, as regards fractal dimension, family of fractal curves as a set of base elements of approximation – an equivalent of base splines. In this aspect the method is similar to the classic B-splines method and does not use Iterated Function Systems (IFS), as Barnsey’s method does. It may be determined as a hard interpolation method aiming at working out an algorithm providing its effective application in practice, whereas to a lesser degree attention is paid to mathematical elegance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractal Functions and Interpolation. Constructive Approximation 2, 303–332 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press, Inc., Boston (1993)

    MATH  Google Scholar 

  4. Hearn, D., Baker, M.P.: Computer Graphics. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  5. Stanley, H.E., Ostrosky, N.: On Growth and Form: Fractal and Non-Fractal Patterns in Physics. Nijhoff, Boston (1986)

    Google Scholar 

  6. Nittman, J., Daccord, G., Stanley, H.E.: Fractal growth of viscous fingers: quantative characterization of a fluid instability phenomenon. Nature, London 314, 141 (1985)

    Article  Google Scholar 

  7. Lovejoy, S.: Area-perimeter relation for rain and cloud areas. Science 216, 185–187 (1982)

    Article  Google Scholar 

  8. Russ, J.C.: Fractal Surfaces. Plenum Press, New York (1984)

    Google Scholar 

  9. Peitgen, H., Saupe, D.: The science of f ractal images. Springer, New York (1988)

    Google Scholar 

  10. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency. In: Ghil, M., et al. (eds.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, Amsterdam (1985)

    Google Scholar 

  11. Kawaguchi, Y.: A morphological study of the form of nature. Comput. Graph. 16, 3 (1982)

    Google Scholar 

  12. Matsushita, M.: Experimental Observation of Aggregations. In: Avnir, D. (ed.) The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, J. Wiley and Sons, Chichester (1989)

    Google Scholar 

  13. West, B.: Fractal Physiology and Chaos in Medicine. World Scientific Publ. Co, Singapore (1990)

    MATH  Google Scholar 

  14. Feder, J.: Fractals. Plenum Press, New York (1988)

    MATH  Google Scholar 

  15. Voss, R.: Random fractals: characterisation and measurement. In: Pynn, R., Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems, Plenum Press, New York (1986)

    Google Scholar 

  16. Calvet, L., Fisher, A.: Multifractality in Asset Returns: Theory and Evidence. The Review of Economics and Statistics 84(3), 381–406 (2002)

    Article  Google Scholar 

  17. Hutchinson, J.E.: fractals and Self Similarity. Ind. Univ. J. Math. 30, 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. Journal of Appoximation Theory 57, 14–34 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Navascues, M.A., Sebastian, M.V.: Some Results of Convergence of Cubic Spline Fractal Interpolation Functions. Fractals 11(1), 1–7 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden Variable Fractal Interpolation Functions. SIAM J. Math. Anal. 20, 1218–1242 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Massopust, P.R.: Fractal Functions, Fractal Surfaces and Wavelets. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  22. Navascues, M.A.: Fractal Trigonometric Interpolation. Electronic Transactions on Numerical Analysis 20, 64–74 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Wittenbrink, C.M.: IFS fractal interpolation for 2D and 3D visualization. In: Proc. IEEE Visualation 1994, pp. 77–83 (1995)

    Google Scholar 

  24. Zhao, N.: Construction and application of fractal interpolation surfaces. The Visual Computer 12, 132–146 (1996)

    Google Scholar 

  25. Billingsley, P.: Ergodic Theory and Information. John Wiley, Chichester (1965)

    MATH  Google Scholar 

  26. Mandelbrot, B.: Les Objects Fractals: Forme, Hasard et Dimension, Flammarion, Paris (1975)

    Google Scholar 

  27. Mandelbrot, B.B., Frame, M.: Fractals. In: Encyclopedia of Physical Science and Technology, June 28, 2001, vol. 6. Academic Press, Yale University (2002)

    Google Scholar 

  28. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7, 6 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cader, A., Krupski, M. (2006). New Interpolation Method with Fractal Curves. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_112

Download citation

  • DOI: https://doi.org/10.1007/11785231_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics