Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fractal functions and interpolation

  • Published:
Constructive Approximation Aims and scope

Abstract

Let a data set {(x i,y i) ∈I×R;i=0,1,⋯,N} be given, whereI=[x 0,x N]⊂R. We introduce iterated function systems whose attractorsG are graphs of continuous functionsfIR, which interpolate the data according tof(x i)=y i fori ε {0,1,⋯,N}. Results are presented on the existence, coding theory, functional equations and moment theory for such fractal interpolation functions. Applications to the approximation of naturally wiggly functions, which may show some kind of geometrical self-similarity under magnification, such as profiles of cloud tops and mountain ranges, are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barnsley, S. Demko (1985):Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London, Ser. A,399:243–275.

    Google Scholar 

  2. M. Barnsley, S. Demko (1984):Rational approximation of fractals. In: Rational Approximation and Interpolation (P. R. Graves-Morris, E. B. Saff, R. S. Varga, eds.). New York: Springer-Verlag.

    Google Scholar 

  3. M. Barnsley, V. Ervin, D. Hardin, J. Lancaster (1986):Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. U.S.A.,83:1975–1977.

    Google Scholar 

  4. J. Bellissard (1984): Stability and instability in quantum mechanics. C.N.R.S. (France). Preprint.

    Google Scholar 

  5. R. M. Blumenthal, R. G. Getoor (1960):Some theorems on stable processes. Trans. Amer. Math. Soc.,95:263–273.

    Google Scholar 

  6. A. S. Besicovitch, H. D. Ursell (1937):Sets of fractional dimension. J. London Math. Soc.,12:18–25.

    Google Scholar 

  7. S. Demko, L. Hodges, B. Naylor (1985):Construction of fractal objects with iterated function systems. Computer Graphics,19:271–278.

    Google Scholar 

  8. B. Derrida (1986):Real space renormalization and Julia sets in statistical physics. In: Chaotic Dynamics and Fractals (M. F. Barnsley, S. G. Demko, eds.). New York: Academic Press.

    Google Scholar 

  9. P. Diaconis, M. Shashahani (1986):Products of random matrices and computer image generation. Contemp. Math.,50:173–182.

    Google Scholar 

  10. K. J. Falconer (1985): The Geometry of Fractal Sets. London: Cambridge University Press.

    Google Scholar 

  11. A. Fournier, D. Fussell, L. Carpenter (1982):Computer rendering of stochastic models. Comm. ACM,25.

  12. A. M. Garcia (1962):Arithmetic properties of Bernoulli convolutions. Trans. Amer. Math. Soc.,102:409–432.

    Google Scholar 

  13. J. Hutchinson (1981):Fractals and self-similarity. Indiana Univ. Math. J.,30:713–747.

    Google Scholar 

  14. B. Mandelbrot (1982): The Fractal Geometry of Nature. San Francisco: W. H. Freeman.

    Google Scholar 

  15. S. Pelikan (1984):Invariant densities for random maps of the interval. Trans. Amer. Math. Soc.,281:813–825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Charles A. Micchelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnsley, M.F. Fractal functions and interpolation. Constr. Approx 2, 303–329 (1986). https://doi.org/10.1007/BF01893434

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01893434

AMS classification

Key words and phrases

Navigation