Nothing Special   »   [go: up one dir, main page]

Skip to main content

Observation of Crises and Bifurcations in the Hodgkin-Huxley Neuron Model

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

  • 1458 Accesses

Abstract

With the changing of the stimulus frequency, there are a lot of firing dynamics behaviors of interspike intervals (ISIs), such as quasi-periodic, bursting, period-chaotic, chaotic, periodic and the bifurcations of the chaotic attractor appear alternatively in Hodgkin-Huxley (H-H) neuron model. The chaotic behavior is realized over a wide range of frequency and is visualized by using ISIs, and many kinds of abrupt undergoing changes of the ISIs are observed in deferent frequency regions, such as boundary crisis, interior crisis and merging crisis displaying alternately along with the changes changes of external signal frequency, too. And there are many periodic windows and fractal structures in ISIs dynamics behaviors. The saddle node bifurcation resulted collapses of chaos to period-12 orbit in dynamics of ISIs is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jin, W.Y., Xu, J.X., Wu, Y., Hong, L.: Rate of afferent stimulus dependent synchronziation andcoding in coupled neurons system. Chaos, Solitons and Fractals 21, 1221–1229 (2004)

    Article  MATH  Google Scholar 

  2. Jin, W.Y., Xu, J.X., Wu, Y., Hong, L.: An alternating periodic-chaotic ISI sequence of H-H neuron under external sinusoidal stimulus. Chinese Physics 13, 335–340 (2004)

    Article  Google Scholar 

  3. González-Miranda, J.M.: Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. Chaos 13, 845–852 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ott, E.: Chaos in dynamical systems, 2nd edn., pp. 304–344. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  5. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 10, 231–239 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lysetskiy, M., Zurada, J.M.: Bifurcating neuron: computation and learning. Neural Networks 17, 225–232 (2004)

    Article  MATH  Google Scholar 

  7. Xie, Y., Xu, J.X., Hu, S.J., Kang, Y.M., Yang, H.J., Duan, Y.B.: Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation Chaos. Soiltons and Fractals 22, 151–160 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freeman, W., Skarda, C.A.: Spatial EEG patterns, nonlinear dynamics and perception: neo-Sherringtonian view. Brain Research Reviews 10, 147–175 (1985)

    Article  Google Scholar 

  9. Lee, G., Farhat, N.H.: The Bifurcating Neuron Network 1. Neural Networks 14, 115–131 (2001)

    Article  Google Scholar 

  10. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 10, 231–239 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guckenheimer, J., Oliva, R.A.: Chaos in the Hodgkin-Huxley Mode. SIAM Journal of Appled Dynamical Systems 1, 105–114 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, W., Lin, Q., wei, Y., Wu, Y. (2005). Observation of Crises and Bifurcations in the Hodgkin-Huxley Neuron Model. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_50

Download citation

  • DOI: https://doi.org/10.1007/11539087_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics