Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Algorithms for the maximum satisfiability problem

Algorithmen für das maximale Erfüllbarkeitsproblem

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Old and new algorithms for the Maximum Satisfiability problem are studied. We first summarize the different heuristics previously proposed, i.e., the approximation algorithms of Johnson and of Lieberherr for the general Maximum Satisfiability problem, and the heuristics of Lieberherr and Specker, Poljak and Turzik for the Maximum 2-Satisfiability problem. We then consider two recent local search algorithmic schemes, the Simulated Annealing method of Kirkpatrick, Gelatt and Vecchi and the Steepest Ascent Mildest Descent method, and adapt them to the Maximum Satisfiability problem. The resulting algorithms, which avoid being blocked as soon as a local optimum has been found, are shown empirically to be more efficient than the heuristics previously proposed in the literature.

Zusammenfassung

Es werden bekannte und neue Algorithmen für das maximale Erfüllbarkeitsproblem untersucht. Zunächst geben wir eine Übersicht über verschiedene bisher vorgeschlagene Heuristiken wie z.B. die Approximationsalgorithmen von Johnson und von Lieberherr für das allgemeine maximale Erfüllbarkeitsproblem und die Heuristiken von Lieberherr und Specker, sowie von Poljak und Turzik für das maximale 2-Erfüllbarkeitsproblem. Sodann beachten wir zwei neuere lokale Suchverfahren, wie die Simulated Annealing Methode von Kirkpatrick, Gelatt und Vecchi sowie die Methods des steilsten Anstieges und flachsten Abstieges und adaptieren diese Verfahren für das maximale Erfüllbarkeitsproblem. Es zeigt sich, daß diese Verfahren, die nicht in einem lokalen Optimum stehen bleiben, empirisch effizienter sind als die bisher in der Literatur vorgeschlagenen Heuristiken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anily and Federgruen, Simulated Annealing methods with general acceptance probabilities, Journal of Applied Probability24 (1987) 657–667.

    Google Scholar 

  2. Arvind, V., and S. Biswas, AnO(n 2) algorithm for the satisfiability problem of a subset of propositional sentences in CNF that includes all Horn sentences, Information Processing Letters24 (1987) 67–69.

    Google Scholar 

  3. Asirelli, P., M. de Santis, and A. Martelli, Integrity constraints in logic data bases, Journal of Logic Programming3 (1985) 221–232.

    Google Scholar 

  4. Aspvall, B., M. F. Plass, and R. E. Tarjan, A linear-time algorithm for testing the truth of certain quantified Boolean formulas, Information Processing Letters8 (1979) 121–123.

    Google Scholar 

  5. Blair, C. E., R. G. Jeroslow, and J. K. Lowe, Some results and experiments in programming for propositional logic, Computers and Operations Research13 (5) (1986) 633–645.

    Google Scholar 

  6. Burkard, R. E., and F. Rendl, Thermodynamically motivated simulation procedure, European Journal of Operational Research17 (1984) 169–174.

    Google Scholar 

  7. Cerny, V., A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications45 (1) (1985) 41–51.

    Google Scholar 

  8. Cook, S., The complexity of theorem proving procedures, Proceedings of the Third Symposium of the Association of Computing Machinery on the Theory of Computing (1971) 151–158.

  9. Davis, M., and H. Putnam, A computing procedure for quantification theory, Journal of ACM7 (1960) 202–215.

    Google Scholar 

  10. Dowling, W. F., and J. H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, Journal of Logic Programming3 (1984) 267–284.

    Google Scholar 

  11. Dubois, O., Etude de classes de données du problème de satisfiabilité, réfutation de la conjecture de Tovey, Comptes Rendus de l'Académie des Sciences de Paris 303, série I (15) (1986) 765–768.

    Google Scholar 

  12. Edwards, C. S., Some extremal properties of bipartite subgraphs, Canadian Journal of Mathematics25 (1973) 475–485.

    Google Scholar 

  13. Edwards, C. S., An improved lower bound for the number of edges in a largest bipartite subgraph, in: Recent advances in graph theory (Academia, Prague, 1975), 167–181.

    Google Scholar 

  14. El Baamrani, A., Analyse de deux méthodes heuristiques: méthode de “recuit” et méthode de “plus grande descente—plus petite remontée”, B. Sc. Essay, Faculté Universitaire Catholique de Mons, Belgium (1985).

    Google Scholar 

  15. Even, S., Itai, A., and Shamir, A., On the complexity of timetable and multicommodity flow problems, SIAM Journal of Computing5 (1976) 691–703.

    Google Scholar 

  16. Gallaire, H., Minker, J., and J. M. Nicolas, Logic and databases: A deductive approach, Computing Surveys 16 (2) (June 1984) 153–185.

    Google Scholar 

  17. Garey, R. M., and D. S. Johnson, Computers and intractability, a guide to the theory of NP-completeness, W. H. Freeman and Co. 1979.

  18. Garey, R. M., Johnson, D. S., and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science1 (1976) 237–267.

    Google Scholar 

  19. Glover, F., Future paths for integer programming and links to artificial intelligence, Computers and Operations Research13 (5) (1986) 533–549.

    Google Scholar 

  20. Glover, F., Tabu Search—Part 1, ORSA Journal on Computing1 (1989) 190–206.

    Google Scholar 

  21. Hammer, P. L., Hansen, P., and B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization, Mathematical Programming28 (1984) 121–155.

    Google Scholar 

  22. Hammer, P. L., and S. Rudeanu, Boolean methods in Operations Research and Related Areas, Springer-Verlag, Heidelberg, 1968.

    Google Scholar 

  23. Hansen, P., Les procédures d'optimisation et d'exploration par séparation et évaluation, in Combinatorial Programming, B. Roy (ed.), Reidel, Dordrecht, 1975, 19–25.

    Google Scholar 

  24. Hansen, P., A cascade algorithm for the logical closure of a set of binary relations, Information Processing Letters5 (2) (1976) 50–53.

    Google Scholar 

  25. Hansen, P., Methods of nonlinear 0–1 programming, Annals of Discrete Mathematics5 (1979) 53–69.

    Google Scholar 

  26. Hansen, P., The Steepest Ascent Mildest Descent heuristic for combinatorial programming, presented at the congress on Numerical Methods in Combinatorial Optimization, Capri, March 1986.

  27. Hansen, P., and B. Jaumard, Algorithms for the Maximum Satisfiability Problem, Rutcor Research Report, RRR#43-87, November 1987.

  28. Hansen, P., Jaumard, B., and M. Minoux, A linear expected time algorithm for deriving all logical conclusions implied by a set of boolean inequalities, Mathematical Programming34 (1986) 223–231.

    Google Scholar 

  29. Hansen, P., S. H. Lu, B. Jaumard and D. Stephany, A computational comparison of the Simulated Annealing and Steepest Descent Mildest Ascent heuristics, (in preparation).

  30. Hayes, F., D. A. Waterman and D. B. Lenat, Building expert systems, Reading, Ma., Addisson-Wesley, 1983.

    Google Scholar 

  31. Henschen, L., and L. Wos, Unit refutation and Horn sets, Journal of ACM21 (1974) 590–605.

    Google Scholar 

  32. Hertz, A., and D. de Werra, The Tabu Search Metaheuristic: How we used it, Annals of Mathematics and Artificial Intelligence (to appear).

  33. Hooker, J. N., Input proofs and rank one cutting-planes, ORSA Journal on Computing1 (1989) 137–145.

    Google Scholar 

  34. Jaumard, B., Extraction et utilisation de relations booléennes pour la résolution des programmes linéaires en variables 0–1, Thèse de Doctorat, (Paris, 1986).

  35. Jaumard, B., and B. Simeone, On the complexity of the maximum satisfiability problem for Horn formulas, Information Processing Letters26 (1987/88) 1–4.

    Google Scholar 

  36. Johnson, D. S., Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences9 (1974) 256–278.

    Google Scholar 

  37. Jones, N. D., and W. T. Laaser, Complete problems for deterministic polynomial time, Theoretical Computer Science3 (1977) 107–117.

    Google Scholar 

  38. Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972, 85–104.

    Google Scholar 

  39. Kirpatrick, S., C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science 220 (4598) (1983) 671–674.

    Google Scholar 

  40. Lieberherr, K. J., Algorithmic extremal problems in combinatorial optimization, Journal of Algorithms3 (1982) 225–244.

    Google Scholar 

  41. Lieberherr, K. J., and E. Specker, Complexity of partial satisfaction, Journal of ACM28 (2) (1981) 411–421.

    Google Scholar 

  42. Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys.21 (1953) 1087–1092.

    Google Scholar 

  43. Nguyen, T. A., W. A. Perkins, T. J. Laffey and D. Pecora, Checking an expert systems knowledge base for consistency and completeness, IJCAI 85, Arvind Joshi (ed.), Los Altos, California, 375–378.

  44. Poljak, S., and D. Turzik, A polynomial algorithm for constructing a large bipartite subgraph, with an application to a satisfiability problem, Canadian Journal of MathematicsXXXIV (3) (1982) 519–524.

    Google Scholar 

  45. Simeone, B., Quadratic 0–1 programming, boolean functions and graphs, Doctoral Dissertation, University of Waterloo, (Waterloo, Ontario, 1979).

    Google Scholar 

  46. Schaefer, T., The complexity of satisfiability problems, Proc. 10th Annual ACM Symposium on Theory of Computing (1978) 216–226.

  47. Stephany, D., Localisation de postes en fonction du traffic interpostes, B. Sc. Essay, Faculté Universitaire Catholique de Mons. Belgium (1986).

    Google Scholar 

  48. Sutter, A., Programmation non linéaire en variables 0–1 et application à des problèmes de placement de tâches dans des systèmes distribués, Thèse de Doctorat, Conservatoire National des Arts et Métiers, Paris, France, Juin 1989.

    Google Scholar 

  49. Tovey, C. A., A simplified NP-complete satisfiability problem, Discrete Applied Mathematics8 (1984) 85–89.

    Google Scholar 

  50. Yamasaki, S., and S. Doshita, The satisfiability problem for a class of Horn sentences and some non-Horn sentences in propositional logic, Information and Control59 (1983) 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research of the first author was supported by Air Force Office of Scientific Research Grant # AFOSR-0271 to Rutgers University. Research of the second author was carried out while visiting the CAIP Center, Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, P., Jaumard, B. Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990). https://doi.org/10.1007/BF02241270

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241270

AMS Subject Classification

Key words

Navigation