Abstract
Old and new algorithms for the Maximum Satisfiability problem are studied. We first summarize the different heuristics previously proposed, i.e., the approximation algorithms of Johnson and of Lieberherr for the general Maximum Satisfiability problem, and the heuristics of Lieberherr and Specker, Poljak and Turzik for the Maximum 2-Satisfiability problem. We then consider two recent local search algorithmic schemes, the Simulated Annealing method of Kirkpatrick, Gelatt and Vecchi and the Steepest Ascent Mildest Descent method, and adapt them to the Maximum Satisfiability problem. The resulting algorithms, which avoid being blocked as soon as a local optimum has been found, are shown empirically to be more efficient than the heuristics previously proposed in the literature.
Zusammenfassung
Es werden bekannte und neue Algorithmen für das maximale Erfüllbarkeitsproblem untersucht. Zunächst geben wir eine Übersicht über verschiedene bisher vorgeschlagene Heuristiken wie z.B. die Approximationsalgorithmen von Johnson und von Lieberherr für das allgemeine maximale Erfüllbarkeitsproblem und die Heuristiken von Lieberherr und Specker, sowie von Poljak und Turzik für das maximale 2-Erfüllbarkeitsproblem. Sodann beachten wir zwei neuere lokale Suchverfahren, wie die Simulated Annealing Methode von Kirkpatrick, Gelatt und Vecchi sowie die Methods des steilsten Anstieges und flachsten Abstieges und adaptieren diese Verfahren für das maximale Erfüllbarkeitsproblem. Es zeigt sich, daß diese Verfahren, die nicht in einem lokalen Optimum stehen bleiben, empirisch effizienter sind als die bisher in der Literatur vorgeschlagenen Heuristiken.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anily and Federgruen, Simulated Annealing methods with general acceptance probabilities, Journal of Applied Probability24 (1987) 657–667.
Arvind, V., and S. Biswas, AnO(n 2) algorithm for the satisfiability problem of a subset of propositional sentences in CNF that includes all Horn sentences, Information Processing Letters24 (1987) 67–69.
Asirelli, P., M. de Santis, and A. Martelli, Integrity constraints in logic data bases, Journal of Logic Programming3 (1985) 221–232.
Aspvall, B., M. F. Plass, and R. E. Tarjan, A linear-time algorithm for testing the truth of certain quantified Boolean formulas, Information Processing Letters8 (1979) 121–123.
Blair, C. E., R. G. Jeroslow, and J. K. Lowe, Some results and experiments in programming for propositional logic, Computers and Operations Research13 (5) (1986) 633–645.
Burkard, R. E., and F. Rendl, Thermodynamically motivated simulation procedure, European Journal of Operational Research17 (1984) 169–174.
Cerny, V., A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications45 (1) (1985) 41–51.
Cook, S., The complexity of theorem proving procedures, Proceedings of the Third Symposium of the Association of Computing Machinery on the Theory of Computing (1971) 151–158.
Davis, M., and H. Putnam, A computing procedure for quantification theory, Journal of ACM7 (1960) 202–215.
Dowling, W. F., and J. H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, Journal of Logic Programming3 (1984) 267–284.
Dubois, O., Etude de classes de données du problème de satisfiabilité, réfutation de la conjecture de Tovey, Comptes Rendus de l'Académie des Sciences de Paris 303, série I (15) (1986) 765–768.
Edwards, C. S., Some extremal properties of bipartite subgraphs, Canadian Journal of Mathematics25 (1973) 475–485.
Edwards, C. S., An improved lower bound for the number of edges in a largest bipartite subgraph, in: Recent advances in graph theory (Academia, Prague, 1975), 167–181.
El Baamrani, A., Analyse de deux méthodes heuristiques: méthode de “recuit” et méthode de “plus grande descente—plus petite remontée”, B. Sc. Essay, Faculté Universitaire Catholique de Mons, Belgium (1985).
Even, S., Itai, A., and Shamir, A., On the complexity of timetable and multicommodity flow problems, SIAM Journal of Computing5 (1976) 691–703.
Gallaire, H., Minker, J., and J. M. Nicolas, Logic and databases: A deductive approach, Computing Surveys 16 (2) (June 1984) 153–185.
Garey, R. M., and D. S. Johnson, Computers and intractability, a guide to the theory of NP-completeness, W. H. Freeman and Co. 1979.
Garey, R. M., Johnson, D. S., and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science1 (1976) 237–267.
Glover, F., Future paths for integer programming and links to artificial intelligence, Computers and Operations Research13 (5) (1986) 533–549.
Glover, F., Tabu Search—Part 1, ORSA Journal on Computing1 (1989) 190–206.
Hammer, P. L., Hansen, P., and B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization, Mathematical Programming28 (1984) 121–155.
Hammer, P. L., and S. Rudeanu, Boolean methods in Operations Research and Related Areas, Springer-Verlag, Heidelberg, 1968.
Hansen, P., Les procédures d'optimisation et d'exploration par séparation et évaluation, in Combinatorial Programming, B. Roy (ed.), Reidel, Dordrecht, 1975, 19–25.
Hansen, P., A cascade algorithm for the logical closure of a set of binary relations, Information Processing Letters5 (2) (1976) 50–53.
Hansen, P., Methods of nonlinear 0–1 programming, Annals of Discrete Mathematics5 (1979) 53–69.
Hansen, P., The Steepest Ascent Mildest Descent heuristic for combinatorial programming, presented at the congress on Numerical Methods in Combinatorial Optimization, Capri, March 1986.
Hansen, P., and B. Jaumard, Algorithms for the Maximum Satisfiability Problem, Rutcor Research Report, RRR#43-87, November 1987.
Hansen, P., Jaumard, B., and M. Minoux, A linear expected time algorithm for deriving all logical conclusions implied by a set of boolean inequalities, Mathematical Programming34 (1986) 223–231.
Hansen, P., S. H. Lu, B. Jaumard and D. Stephany, A computational comparison of the Simulated Annealing and Steepest Descent Mildest Ascent heuristics, (in preparation).
Hayes, F., D. A. Waterman and D. B. Lenat, Building expert systems, Reading, Ma., Addisson-Wesley, 1983.
Henschen, L., and L. Wos, Unit refutation and Horn sets, Journal of ACM21 (1974) 590–605.
Hertz, A., and D. de Werra, The Tabu Search Metaheuristic: How we used it, Annals of Mathematics and Artificial Intelligence (to appear).
Hooker, J. N., Input proofs and rank one cutting-planes, ORSA Journal on Computing1 (1989) 137–145.
Jaumard, B., Extraction et utilisation de relations booléennes pour la résolution des programmes linéaires en variables 0–1, Thèse de Doctorat, (Paris, 1986).
Jaumard, B., and B. Simeone, On the complexity of the maximum satisfiability problem for Horn formulas, Information Processing Letters26 (1987/88) 1–4.
Johnson, D. S., Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences9 (1974) 256–278.
Jones, N. D., and W. T. Laaser, Complete problems for deterministic polynomial time, Theoretical Computer Science3 (1977) 107–117.
Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972, 85–104.
Kirpatrick, S., C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science 220 (4598) (1983) 671–674.
Lieberherr, K. J., Algorithmic extremal problems in combinatorial optimization, Journal of Algorithms3 (1982) 225–244.
Lieberherr, K. J., and E. Specker, Complexity of partial satisfaction, Journal of ACM28 (2) (1981) 411–421.
Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys.21 (1953) 1087–1092.
Nguyen, T. A., W. A. Perkins, T. J. Laffey and D. Pecora, Checking an expert systems knowledge base for consistency and completeness, IJCAI 85, Arvind Joshi (ed.), Los Altos, California, 375–378.
Poljak, S., and D. Turzik, A polynomial algorithm for constructing a large bipartite subgraph, with an application to a satisfiability problem, Canadian Journal of MathematicsXXXIV (3) (1982) 519–524.
Simeone, B., Quadratic 0–1 programming, boolean functions and graphs, Doctoral Dissertation, University of Waterloo, (Waterloo, Ontario, 1979).
Schaefer, T., The complexity of satisfiability problems, Proc. 10th Annual ACM Symposium on Theory of Computing (1978) 216–226.
Stephany, D., Localisation de postes en fonction du traffic interpostes, B. Sc. Essay, Faculté Universitaire Catholique de Mons. Belgium (1986).
Sutter, A., Programmation non linéaire en variables 0–1 et application à des problèmes de placement de tâches dans des systèmes distribués, Thèse de Doctorat, Conservatoire National des Arts et Métiers, Paris, France, Juin 1989.
Tovey, C. A., A simplified NP-complete satisfiability problem, Discrete Applied Mathematics8 (1984) 85–89.
Yamasaki, S., and S. Doshita, The satisfiability problem for a class of Horn sentences and some non-Horn sentences in propositional logic, Information and Control59 (1983) 1–12.
Author information
Authors and Affiliations
Additional information
Research of the first author was supported by Air Force Office of Scientific Research Grant # AFOSR-0271 to Rutgers University. Research of the second author was carried out while visiting the CAIP Center, Rutgers University.
Rights and permissions
About this article
Cite this article
Hansen, P., Jaumard, B. Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990). https://doi.org/10.1007/BF02241270
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02241270