Abstract
The paper carries out a preliminary analysis of the basic physical and chemical mechanisms of ion mobility in carbon nanotubes taken as models of molecular pores. Then, the selective permeability of monovalent and divalent cations in ionic molecular pores is evaluated by carrying out molecular dynamics calculations for the nanotube model and results are compared with those of a statistical treatment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hille, B.: Ionic channels of excitable membranes. Sinaeur Associates Inc. (1984)
Hille, B.: Ionic channels: molecular pores of excitable membranes. Harvey Lect. 82, 47–69 (1986)
Eisenman, G., Horn, R.: Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225 (1983)
Reuter, H., Stevens, C.: Ion conductance and ion selectivity of potassium channels in snail neurones. J. Membr. Biol. 57, 103–118 (1980)
Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., Numa, S.: Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988)
Heinemann, S., Terlau, H., Sthmer, W., Imoto, K., Numa, S.: Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992)
Kim, M., Morii, T., Sun, L., Imoto, K., Mori, Y.: Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318, 145–148 (1993)
Galzi, J., Devillers-Thiry, A., Hussy, N., Bertrand, S., Changeux, J., Bertrand, D.: Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992)
Dorman, V., Partenskii, M., Jordan, P.: A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity. Biophys. J. 70, 121–134 (1996)
Laio, A., Torre, V.: Physical origin of selectivity in ionic channels of biological membranes. Biophys. J. 76, 129–148 (1999)
Smith, W., Forester, T.: Dlpoly 2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14, 136–141 (1996)
Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983)
Kalra, A., Garde, S., Hummer, G.: Osmotic water transport through carbon nan-otube membranes. Proc. Natl. Acad. Sci. U.S.A. 100, 10175–10180 (2003)
Berezhkovskii, A., Hummer, G.: Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002)
Mann, D.J., Halls, M.D.: Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett. 90, 195503 (2003)
Zhu, F., Schulten, K.: Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J. 85, 236–244 (2003)
York, D., Wlodawer, A., Pedersen, L., Darden, T.: Atomic-level accuracy in simulations of large protein crystals. Proc. Natl. Acad. Sci. U.S.A. 91, 8715–8718 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arteconi, L., Laganà, A. (2005). A Molecular Dynamics Study of Ion Permeability Through Molecular Pores. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_114
Download citation
DOI: https://doi.org/10.1007/11424758_114
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25860-5
Online ISBN: 978-3-540-32043-2
eBook Packages: Computer ScienceComputer Science (R0)