Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Molecular Dynamics Study of Ion Permeability Through Molecular Pores

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3480))

Included in the following conference series:

Abstract

The paper carries out a preliminary analysis of the basic physical and chemical mechanisms of ion mobility in carbon nanotubes taken as models of molecular pores. Then, the selective permeability of monovalent and divalent cations in ionic molecular pores is evaluated by carrying out molecular dynamics calculations for the nanotube model and results are compared with those of a statistical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hille, B.: Ionic channels of excitable membranes. Sinaeur Associates Inc. (1984)

    Google Scholar 

  2. Hille, B.: Ionic channels: molecular pores of excitable membranes. Harvey Lect. 82, 47–69 (1986)

    Google Scholar 

  3. Eisenman, G., Horn, R.: Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225 (1983)

    Article  Google Scholar 

  4. Reuter, H., Stevens, C.: Ion conductance and ion selectivity of potassium channels in snail neurones. J. Membr. Biol. 57, 103–118 (1980)

    Article  Google Scholar 

  5. Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., Numa, S.: Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988)

    Article  Google Scholar 

  6. Heinemann, S., Terlau, H., Sthmer, W., Imoto, K., Numa, S.: Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992)

    Article  Google Scholar 

  7. Kim, M., Morii, T., Sun, L., Imoto, K., Mori, Y.: Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318, 145–148 (1993)

    Article  Google Scholar 

  8. Galzi, J., Devillers-Thiry, A., Hussy, N., Bertrand, S., Changeux, J., Bertrand, D.: Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992)

    Article  Google Scholar 

  9. Dorman, V., Partenskii, M., Jordan, P.: A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity. Biophys. J. 70, 121–134 (1996)

    Article  Google Scholar 

  10. Laio, A., Torre, V.: Physical origin of selectivity in ionic channels of biological membranes. Biophys. J. 76, 129–148 (1999)

    Article  Google Scholar 

  11. Smith, W., Forester, T.: Dlpoly 2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14, 136–141 (1996)

    Article  Google Scholar 

  12. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983)

    Article  Google Scholar 

  13. Kalra, A., Garde, S., Hummer, G.: Osmotic water transport through carbon nan-otube membranes. Proc. Natl. Acad. Sci. U.S.A. 100, 10175–10180 (2003)

    Google Scholar 

  14. Berezhkovskii, A., Hummer, G.: Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002)

    Google Scholar 

  15. Mann, D.J., Halls, M.D.: Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett.  90, 195503 (2003)

    Article  Google Scholar 

  16. Zhu, F., Schulten, K.: Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J.  85, 236–244 (2003)

    Google Scholar 

  17. York, D., Wlodawer, A., Pedersen, L., Darden, T.: Atomic-level accuracy in simulations of large protein crystals. Proc. Natl. Acad. Sci. U.S.A. 91, 8715–8718 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arteconi, L., Laganà, A. (2005). A Molecular Dynamics Study of Ion Permeability Through Molecular Pores. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_114

Download citation

  • DOI: https://doi.org/10.1007/11424758_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25860-5

  • Online ISBN: 978-3-540-32043-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics