Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ion conductance and ion selectivity of potassium channels in snail neurones

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Delayed potassium channels were studied in internally perfused neurone somata from land snails. Relaxation and fluctuation analysis of this class of ion channels revealed Hodgkin-Huxley type K channels with an average single channel conductance (γ K) of 2.40±0.15 pS. The conductance of open channels is independent of voltage and virtually all K channels seem to be open at maximum K conductance (g K) of the membrane. Voltage dependent time constants of activation ofg K, calculated from K current relaxation and from cut-off frequencies of power spectra, are very similar indicating dominant first-order kinetics. Ion selectivity of K channels was studied by ion substitution in the external medium and exhibited the following sequence: T1+>K+>Rb+>Cs+>NH +4 >Li+>Na+. The sequence of the alkali cations does not conform to any of the sequences predicted by Eisenman's theory. However, the data are well accommodated by a new theory assuming a single rate-limiting barrier that governs ion movement through the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.J., Gage, P.W. 1979. Ionic currents in response to membrane depolarization in anAplysia neurone.J. Physiol. (London) 289:115

    Google Scholar 

  • Anderson, C.R., Stevens, C.F. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction.J. Physiol. (London) 235:655

    Google Scholar 

  • Armstrong, C.M. 1975. Ionic pores, gates, and gating currents.Q. Rev. Biophys. 7:179

    Google Scholar 

  • Begenisich, T., Stevens, C.F. 1975. How many conductance states do potassium channels have?Biophys. J. 15:843

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    Google Scholar 

  • Bockris, J.O'M., Reddy, A.K.N. 1973. Modern Electrochemistry, Vol. 1. Plenum, New York

    Google Scholar 

  • Born, M. 1920. Volumen und Hydratationswärme der Ionen.Z. Phys. 1:45

    Google Scholar 

  • Buckingham, A.D. 1957. A theory of ion-solvent interaction.Faraday Soc. Disc. 24:151

    Google Scholar 

  • Connor, J.A., Stevens, C.F. 1971a. Inward and delayed outward membrane currents in isolated neural somata under voltage clamp.J. Physiol. (London) 213:1

    Google Scholar 

  • Connor, J.A., Stevens, C.F. 1971b. Voltage clamp studies of a transient outward membrane current in gastropod neural somata.J. Physiol. (London) 213:21

    Google Scholar 

  • Conti, F., DeFelice, L.J., Wanke, E. 1975. Potassium and sodium ion current noise in the membrane of the squid giant axon.J. Physiol. (London) 248:45

    Google Scholar 

  • Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    Google Scholar 

  • Dogonadze, R.R., Kornyshev, A.A. 1974. Polar solvent structure in the theory of ionic solvation.J. Chem. Soc. Faraday Trans. 2.70:1121

    Google Scholar 

  • Eisenman, G. 1963. Cation selective glass electrodes and their mode of operation.Biophys. J. 2 (suppl. 2):259

    Google Scholar 

  • Fishman, H.M., Moore, L.E., Poussart, D.J.M. 1975. Potassiumion conduction noise in squid axon membrane.J. Membrane Biol. 24:305

    Google Scholar 

  • Gay, L.A., Stanfield, P.R. 1978. The selectivity of the delayed potassium conductance of frog skeletal muscle fibers.Pfluegers Arch. 378:177

    Google Scholar 

  • Goldman, D.E. 1943. Potential impedance and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  • Heyer, C.B., Lux, H.D. 1976. Control of the delayed outward potassium currents in bursting pace-makers neurones of the snail.Helix Pomatia.J. Physiol. (London) 262:349

    Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small ions.J. Gen. Physiol. 61:669

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes — A Series of Advances, Vol. 3, Dynamic Properties of Lipid Bilayers & Biological Membranes. G. Eisenman, editor. p. 255. Marcel Dekker, Inc., New York

    Google Scholar 

  • Hille, B. 1977. Ionic basis of resting and action potentials.In: Handbook of Physiology, The Nervous System I. E. Kandel, editor. p. 99. Williams & Wilkin, Baltimore

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    Google Scholar 

  • Horn, R., Stevens, C.F. 1980. Relation between structure and function of ion channels.Comm. Mol. Cell. Biophys. (in press)

  • Huang, L.M., Catterall, W.A., Ehrenstein, G. 1978. Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells.J. Gen. Physiol. 71:397

    Google Scholar 

  • Joesten, M.D., Schaad, L.J. 1974. Hydrogen Bonding. Marcel Dekker, Inc., New York

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A. 1977. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones.J. Physiol. (London) 270:545

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Doroshenko, P.A. 1975. Outward currents in isolated snail neurones. II. Effect of TEA.Comp. Biochem. Physiol. 51C:265

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, U.T. 1975. Effects of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells.Nature (London) 257:691

    Google Scholar 

  • Krasne, S., Eisenman, G. 1973. The molecular basis of ion selectivity.In: Membranes—A Series of Advances, Vol. 2, G. Eisenman, editor. p. 179. Marcel Dekker, Inc., New York

    Google Scholar 

  • Lee, A.G. 1977. The coordination chemistry of thallium (I).Coord. Chem. Rev. 8:281

    Google Scholar 

  • Lee, K.S., Akaike, N., Brown, A.M. 1978. Properties of internally perfused, voltage clamped, isolated nerve cell bodies.J. Gen. Physiol. 71:489

    Google Scholar 

  • Matsuoka, O., Clementi, E., Yoshimine, M. 1976. Cl study of the water dimer potential surface.J. Chem. Phys. 64:1351

    Google Scholar 

  • Meech, R.W. 1978. Calcium-dependent potassium activation in nervous tissue.Ann. Rev. Biophys. Bioeng. 7:1

    Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurones under voltage clamp: A component mediated by calcium influx.J. Physiol. (London) 249:211

    Google Scholar 

  • Meves, H. 1968. The ionic requirements for the production of action potentials inHelix pomatia neurones.Pfluegers Arch. 304:215

    Google Scholar 

  • Neher, E. 1971. Two fast transient current components during voltage clamp on snail neurones.J. Gen. Physiol. 58:36

    Google Scholar 

  • Neher, E., Lux, H.D. 1973. Rapid changes of potassium concentration at the outer surface of exposed neurones during membrane current flow.J. Gen. Physiol. 61:385

    Google Scholar 

  • Neher, E., Stevens, C.F. 1977. Conductance fluctuations and ionic pores in membranes.Annu. Rev. Biophys. Bioeng. 6:345

    Google Scholar 

  • Noyes, R.M. 1962. Thermodynamics of ion hydration as a measure of effective dielectric properties of water.J. Am. Chem. Soc. 84:513

    Google Scholar 

  • Partridge, L.D., Stevens, C.F. 1976. A mechanism for spike frequency adaptation.J. Physiol. (London) 256:315

    Google Scholar 

  • Payzant, J.D., Cunningham, A.J., Kebarle, P. 1973. Gas phase solvation of the ammonium ion by NH3 and H2O and stabilities of mixed clusters NHa(NH3)n(H2O)w.Can. J. Chem. 51:3242

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworths, London

    Google Scholar 

  • Scheiner, S., Kern, C.W. 1977. Theoretical studies of environmental effects on protein conformation. 1. Flexibility of the peptide bond.J. Am. Chem. Soc. 99:7042

    Google Scholar 

  • Siebenga, E., Meyer, A.W.A., Verveen, A.A. 1973. Membrane shotnoise in electrically depolarized nodes ofRanvier.Pfluegers Arch. 341:87

    Google Scholar 

  • Sigworth, F.J. 1979. Analysis of nonstationary sodium current fluctuations in frog myelinated nerve. Ph.D. Thesis, Yale University, New Haven, Connecticut

    Google Scholar 

  • Stevens, C.F. 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028

    Google Scholar 

  • Stevens, C.F., Tsien, R.W. 1979. Membrane Transport Processes. Vol. 3. Ion Permeation Through Membrane Channels. Raven Press, New York

    Google Scholar 

  • Thompson, S.H. 1977. Three pharmacologically distinct potassium channels in molluscan neurones.J. Physiol. (London) 265:465

    Google Scholar 

  • Wolbarsht, M.L., MacNichol, E.F., Wagner, H.G. 1960. Glass insulated platinum electrode.Science 132:1309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Walther Wilbrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, H., Stevens, C.F. Ion conductance and ion selectivity of potassium channels in snail neurones. J. Membrain Biol. 57, 103–118 (1980). https://doi.org/10.1007/BF01868997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868997

Keywords

Navigation