Abstract
In this paper, we propose a high order characteristics tracing scheme for the two-dimensional nonlinear incompressible Euler system in vorticity stream function formulation and the guiding center Vlasov model. Such a scheme is incorporated into a semi-Lagrangian finite difference WENO framework for simulating the aforementioned model equations. This is an extension of our earlier work on high order characteristics tracing scheme for the 1D nonlinear Vlasov–Poisson system (Qiu and Russo in J Sci Comput 71:414–434, 2017). The effectiveness of the proposed scheme is demonstrated numerically by an extensive set of test cases.
Similar content being viewed by others
References
Bonaventura, L., Ferretti, R., Rocchi, L.: A fully semi-Lagrangian discretization for the 2D incompressible Navier–Stokes equations in the vorticity-streamfunction formulation. Appl. Math. Comput. 323, 132–144 (2018)
Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)
Celledoni, E., Kometa, B.K., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier–Stokes equations. J. Sci. Comput. 66, 91–115 (2016)
Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)
Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, New York (1998)
Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)
Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM, New York (2013)
Ghizzo, A., Bertrand, P., Shoucri, M., Fijalkow, E., Feix, M.: An Eulerian code for the study of the drift-kinetic Vlasov equation. J. Comput. Phys. 108, 105–121 (1993)
Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313 (1986)
Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37, 289–335 (1980)
Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000)
Liu, J.-G., Wang, C.: High order finite difference methods for unsteady incompressible flows in multi-connected domains. Comput. Fluids 33, 223–255 (2004)
Olshanskii, M.A., Heister, T., Rebholz, L.G., Galvin, K.J.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)
Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system. J. Sci. Comput. 71, 414–434 (2017)
Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)
Rossi, L.F.: Merging computational elements in vortex simulations. SIAM J. Sci. Comput. 18, 1014–1027 (1997)
Russo, G.: A deterministic vortex method for the Navier–Stokes equations. J. Comput. Phys. 108, 84–94 (1993)
Russo, G., Strain, J.A.: Fast triangulated vortex methods for the 2D Euler equations. J. Comput. Phys. 111, 291–323 (1994)
Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Meth. Eng. 17, 1525–1538 (1981)
Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220 (1999)
Souli, M.: Vorticity boundary conditions for Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 134, 311–323 (1996)
Weinan, E., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382 (1996)
Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)
Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. arXiv:1607.07409 (2016)
Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)
Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive rkdg method for the two-dimensional incompressible euler equations and the guiding center Vlasov model. J. Sci. Comput. 73, 1316–1337 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
T. Xiong: Research supported by NSF Grant of Fujian Province 2016J05022, NSFC Grant 11601455, NSAF Grant U1630247, the Fundamental Research Funds for the Central Universities No. 20720160009, and the Marie Skłodowska-Curie Individual Fellowships H2020-MSCA-IF-2014 of the European Commision under the project HNSKMAP 654175.
J.-M. Qiu: Research supported by NSF Grant NSF-DMS-1522777 and Air Force Office of Scientific Computing FA9550-12-0318.
Rights and permissions
About this article
Cite this article
Xiong, T., Russo, G. & Qiu, JM. High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation. J Sci Comput 77, 263–282 (2018). https://doi.org/10.1007/s10915-018-0705-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0705-y