Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a high order characteristics tracing scheme for the two-dimensional nonlinear incompressible Euler system in vorticity stream function formulation and the guiding center Vlasov model. Such a scheme is incorporated into a semi-Lagrangian finite difference WENO framework for simulating the aforementioned model equations. This is an extension of our earlier work on high order characteristics tracing scheme for the 1D nonlinear Vlasov–Poisson system (Qiu and Russo in J Sci Comput 71:414–434, 2017). The effectiveness of the proposed scheme is demonstrated numerically by an extensive set of test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bonaventura, L., Ferretti, R., Rocchi, L.: A fully semi-Lagrangian discretization for the 2D incompressible Navier–Stokes equations in the vorticity-streamfunction formulation. Appl. Math. Comput. 323, 132–144 (2018)

    MathSciNet  Google Scholar 

  2. Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529–551 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Celledoni, E., Kometa, B.K., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier–Stokes equations. J. Sci. Comput. 66, 91–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  5. Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, New York (1998)

    Book  MATH  Google Scholar 

  6. Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  7. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM, New York (2013)

    Book  MATH  Google Scholar 

  9. Ghizzo, A., Bertrand, P., Shoucri, M., Fijalkow, E., Feix, M.: An Eulerian code for the study of the drift-kinetic Vlasov equation. J. Comput. Phys. 108, 105–121 (1993)

    Article  MATH  Google Scholar 

  10. Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313 (1986)

    Article  MATH  Google Scholar 

  11. Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37, 289–335 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J.-G., Wang, C.: High order finite difference methods for unsteady incompressible flows in multi-connected domains. Comput. Fluids 33, 223–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Olshanskii, M.A., Heister, T., Rebholz, L.G., Galvin, K.J.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)

    Article  MathSciNet  Google Scholar 

  15. Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov–Poisson system. J. Sci. Comput. 71, 414–434 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rossi, L.F.: Merging computational elements in vortex simulations. SIAM J. Sci. Comput. 18, 1014–1027 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Russo, G.: A deterministic vortex method for the Navier–Stokes equations. J. Comput. Phys. 108, 84–94 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Russo, G., Strain, J.A.: Fast triangulated vortex methods for the 2D Euler equations. J. Comput. Phys. 111, 291–323 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Meth. Eng. 17, 1525–1538 (1981)

    Article  MATH  Google Scholar 

  21. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Souli, M.: Vorticity boundary conditions for Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 134, 311–323 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weinan, E., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. arXiv:1607.07409 (2016)

  26. Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172, 658–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive rkdg method for the two-dimensional incompressible euler equations and the guiding center Vlasov model. J. Sci. Comput. 73, 1316–1337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Mei Qiu.

Additional information

T. Xiong: Research supported by NSF Grant of Fujian Province 2016J05022, NSFC Grant 11601455, NSAF Grant U1630247, the Fundamental Research Funds for the Central Universities No. 20720160009, and the Marie Skłodowska-Curie Individual Fellowships H2020-MSCA-IF-2014 of the European Commision under the project HNSKMAP 654175.

J.-M. Qiu: Research supported by NSF Grant NSF-DMS-1522777 and Air Force Office of Scientific Computing FA9550-12-0318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., Russo, G. & Qiu, JM. High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation. J Sci Comput 77, 263–282 (2018). https://doi.org/10.1007/s10915-018-0705-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0705-y

Keywords

Navigation