Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we generalize an h-adaptive Runge–Kutta discontinuous Galerkin scheme developed earlier in Zhu et al. (J Sci Comput 69:1346–1365, 2016) for the 1D Vlasov–Poisson system to the guiding center Vlasov model and the 2D time dependent incompressible Euler equations in the vorticity-stream function formulation. The main difficulty of this generalization lies in solving the 2D Poisson equation due to the irregular adaptive mesh with hanging nodes. We adopt a local discontinuous Galerkin method to solve the Poisson equation. The full adaptive algorithm and the related numerical implementation details are included. Extensive numerical tests have been performed to showcase the effectiveness of the adaptive scheme and its advantage over the fixed-mesh scheme in saving computational cost and improving solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bell, J., Colella, P., Glaz, H.: A second order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouseilles, N., Respaud, T., Sonnendrücker, E.: A forward semi-lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Commun. 180, 1730–1745 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22, 2256–2281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Devine, K., Flaherty, J.: Parallel adaptive \(hp\)-refinement techniques for conservation laws. Appl. Numer. Math. 20, 367–386 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)

    Article  MATH  Google Scholar 

  12. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krivodonova, L.: An efficient local time-stepping scheme for solution of nonlinear conservation laws. J. Comput. Phys. 229, 8537–8551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Levy, D., Tadmor, E.: Non-oscillatory central schemes for the incompressible 2-D Euler equations. Math. Res. Lett. 4, 321–340 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, L., Li, X., Hu, F.Q.: Nonuniform time-step Runge–Kutta discontinuous Galerkin method for computational aeroacoustics. J. Comput. Phys. 229, 6874–6897 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maleki, F., Khan, A.: A novel local time stepping algorithm for shallow water flow simulation in the discontinuous Galerkin framework. Appl. Math. Model. 40, 70–84 (2016)

    Article  MathSciNet  Google Scholar 

  18. Mehrenberger, M., Mendoza, L., Prouveur, C., Sonnendrücker, E.: Solving the guiding-center model on a regular hexagonal mesh. ESAIM Proc. Surv. 53, 149–176 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  19. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863–889 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Weinan, E., Shu, C.-W.: A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. J. Comput. Phys. 110, 39–46 (1994)

    Article  MATH  Google Scholar 

  25. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhu, H., Gao, Z.: An \(h\)-adaptive RKDG method with troubled-cell indicator for one-dimensional detonation wave simulations. Adv. Comput. Math. 42, 1081–1102 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhu, H., Qiu, J.: Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, H., Qiu, J.: An \(h\)-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv. Comput. Math. 39, 445–463 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhu, H., Qiu, J.: An \(h\)-adaptive Runge–Kutta discontinuous Galerkin method for Hamilton–Jacobi equations. Numer. Math. Theory Methods Appl. 6, 617–636 (2013)

    MATH  MathSciNet  Google Scholar 

  30. Zhu, H., Qiu, J., Qiu, J.-M.: An \(h\)-adaptive RKDG method for the Vlasov–Poisson system. J. Sci. Comput. 69, 1346–1365 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Mei Qiu.

Additional information

Dedicated to Prof. Chi-Wang Shu on the occasion of his 60th birthday.

The research is partially supported by NSFC Grants 11201242 and 11571290, NSAF Grant U1630247, NSF Grant NSF-DMS-1522777, and Air Force Office of Scientific Computing FA9550-16-1-0179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Qiu, J. & Qiu, JM. An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model. J Sci Comput 73, 1316–1337 (2017). https://doi.org/10.1007/s10915-017-0440-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0440-9

Keywords

Navigation