@inproceedings{zhang-etal-2023-towards-effective,
title = "Towards Effective Automatic Debt Collection with Persona Awareness",
author = "Zhang, Tong and
Liu, Junhong and
Huang, Chen and
Liu, Jia and
Liang, Hongru and
Wen, Zujie and
Lei, Wenqiang",
editor = "Wang, Mingxuan and
Zitouni, Imed",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-industry.4",
doi = "10.18653/v1/2023.emnlp-industry.4",
pages = "32--45",
abstract = "Understanding debtor personas is crucial for collectors to empathize with debtors and develop more effective collection strategies. In this paper, we take the first step towards comprehensively investigating the significance of debtor personas and present a successful commercial practice on automatic debt collection agents. Specifically, we organize the debtor personas into a taxonomy and construct a persona-aware conversation dataset. Building upon it, we implement a simple yet effective persona-aware agent called PAD. After two-month online testing, PAD increases the recovery rate by 3.31{\%} and collects an additional {\textasciitilde}100K RMB. Our commercial practice brings inspiration to the debt collection industry by providing an effective automatic solution.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2023-towards-effective">
<titleInfo>
<title>Towards Effective Automatic Debt Collection with Persona Awareness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junhong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongru</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zujie</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenqiang</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingxuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding debtor personas is crucial for collectors to empathize with debtors and develop more effective collection strategies. In this paper, we take the first step towards comprehensively investigating the significance of debtor personas and present a successful commercial practice on automatic debt collection agents. Specifically, we organize the debtor personas into a taxonomy and construct a persona-aware conversation dataset. Building upon it, we implement a simple yet effective persona-aware agent called PAD. After two-month online testing, PAD increases the recovery rate by 3.31% and collects an additional ~100K RMB. Our commercial practice brings inspiration to the debt collection industry by providing an effective automatic solution.</abstract>
<identifier type="citekey">zhang-etal-2023-towards-effective</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-industry.4</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-industry.4</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>32</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Effective Automatic Debt Collection with Persona Awareness
%A Zhang, Tong
%A Liu, Junhong
%A Huang, Chen
%A Liu, Jia
%A Liang, Hongru
%A Wen, Zujie
%A Lei, Wenqiang
%Y Wang, Mingxuan
%Y Zitouni, Imed
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F zhang-etal-2023-towards-effective
%X Understanding debtor personas is crucial for collectors to empathize with debtors and develop more effective collection strategies. In this paper, we take the first step towards comprehensively investigating the significance of debtor personas and present a successful commercial practice on automatic debt collection agents. Specifically, we organize the debtor personas into a taxonomy and construct a persona-aware conversation dataset. Building upon it, we implement a simple yet effective persona-aware agent called PAD. After two-month online testing, PAD increases the recovery rate by 3.31% and collects an additional ~100K RMB. Our commercial practice brings inspiration to the debt collection industry by providing an effective automatic solution.
%R 10.18653/v1/2023.emnlp-industry.4
%U https://aclanthology.org/2023.emnlp-industry.4
%U https://doi.org/10.18653/v1/2023.emnlp-industry.4
%P 32-45
Markdown (Informal)
[Towards Effective Automatic Debt Collection with Persona Awareness](https://aclanthology.org/2023.emnlp-industry.4) (Zhang et al., EMNLP 2023)
ACL
- Tong Zhang, Junhong Liu, Chen Huang, Jia Liu, Hongru Liang, Zujie Wen, and Wenqiang Lei. 2023. Towards Effective Automatic Debt Collection with Persona Awareness. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 32–45, Singapore. Association for Computational Linguistics.