@inproceedings{imai-etal-2023-theoretical,
title = "Theoretical Linguistics Rivals Embeddings in Language Clustering for Multilingual Named Entity Recognition",
author = "Imai, Sakura and
Kawahara, Daisuke and
Orita, Naho and
Oda, Hiromune",
editor = "Padmakumar, Vishakh and
Vallejo, Gisela and
Fu, Yao",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-srw.24",
doi = "10.18653/v1/2023.acl-srw.24",
pages = "139--151",
abstract = "While embedding-based methods have been dominant in language clustering for multilingual tasks, clustering based on linguistic features has not yet been explored much, as it remains baselines (Tan et al., 2019; Shaffer, 2021). This study investigates whether and how theoretical linguistics improves language clustering for multilingual named entity recognition (NER). We propose two types of language groupings: one based on morpho-syntactic features in a nominal domain and one based on a head parameter. Our NER experiments show that the proposed methods largely outperform a state-of-the-art embedding-based model, suggesting that theoretical linguistics plays a significant role in multilingual learning tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="imai-etal-2023-theoretical">
<titleInfo>
<title>Theoretical Linguistics Rivals Embeddings in Language Clustering for Multilingual Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sakura</namePart>
<namePart type="family">Imai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisuke</namePart>
<namePart type="family">Kawahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naho</namePart>
<namePart type="family">Orita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiromune</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishakh</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gisela</namePart>
<namePart type="family">Vallejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While embedding-based methods have been dominant in language clustering for multilingual tasks, clustering based on linguistic features has not yet been explored much, as it remains baselines (Tan et al., 2019; Shaffer, 2021). This study investigates whether and how theoretical linguistics improves language clustering for multilingual named entity recognition (NER). We propose two types of language groupings: one based on morpho-syntactic features in a nominal domain and one based on a head parameter. Our NER experiments show that the proposed methods largely outperform a state-of-the-art embedding-based model, suggesting that theoretical linguistics plays a significant role in multilingual learning tasks.</abstract>
<identifier type="citekey">imai-etal-2023-theoretical</identifier>
<identifier type="doi">10.18653/v1/2023.acl-srw.24</identifier>
<location>
<url>https://aclanthology.org/2023.acl-srw.24</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>139</start>
<end>151</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Theoretical Linguistics Rivals Embeddings in Language Clustering for Multilingual Named Entity Recognition
%A Imai, Sakura
%A Kawahara, Daisuke
%A Orita, Naho
%A Oda, Hiromune
%Y Padmakumar, Vishakh
%Y Vallejo, Gisela
%Y Fu, Yao
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F imai-etal-2023-theoretical
%X While embedding-based methods have been dominant in language clustering for multilingual tasks, clustering based on linguistic features has not yet been explored much, as it remains baselines (Tan et al., 2019; Shaffer, 2021). This study investigates whether and how theoretical linguistics improves language clustering for multilingual named entity recognition (NER). We propose two types of language groupings: one based on morpho-syntactic features in a nominal domain and one based on a head parameter. Our NER experiments show that the proposed methods largely outperform a state-of-the-art embedding-based model, suggesting that theoretical linguistics plays a significant role in multilingual learning tasks.
%R 10.18653/v1/2023.acl-srw.24
%U https://aclanthology.org/2023.acl-srw.24
%U https://doi.org/10.18653/v1/2023.acl-srw.24
%P 139-151
Markdown (Informal)
[Theoretical Linguistics Rivals Embeddings in Language Clustering for Multilingual Named Entity Recognition](https://aclanthology.org/2023.acl-srw.24) (Imai et al., ACL 2023)
ACL