@inproceedings{sulem-etal-2022-yes,
title = "Yes, No or {IDK}: The Challenge of Unanswerable Yes/No Questions",
author = "Sulem, Elior and
Hay, Jamaal and
Roth, Dan",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.79",
doi = "10.18653/v1/2022.naacl-main.79",
pages = "1075--1085",
abstract = "The Yes/No QA task (Clark et al., 2019) consists of {``}Yes{''} or {``}No{''} questions about a given context. However, in realistic scenarios, the information provided in the context is not always sufficient in order to answer the question. For example, given the context {``}She married a lawyer from New-York.{''}, we don{'}t know whether the answer to the question {``}Did she marry in New York?{''} is {``}Yes{''} or {``}No{''}. In this paper, we extend the Yes/No QA task, adding questions with an IDK answer, and show its considerable difficulty compared to the original 2-label task. For this purpose, we (i) enrich the BoolQ dataset (Clark et al., 2019) to include unanswerable questions and (ii) create out-of-domain test sets for the Yes/No/IDK QA task. We study the contribution of training on other Natural Language Understanding tasks. We focus in particular on Extractive QA (Rajpurkar et al., 2018) and Recognizing Textual Entailments (RTE; Dagan et al., 2013), analyzing the differences between 2 and 3 labels using the new data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sulem-etal-2022-yes">
<titleInfo>
<title>Yes, No or IDK: The Challenge of Unanswerable Yes/No Questions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elior</namePart>
<namePart type="family">Sulem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamaal</namePart>
<namePart type="family">Hay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Yes/No QA task (Clark et al., 2019) consists of “Yes” or “No” questions about a given context. However, in realistic scenarios, the information provided in the context is not always sufficient in order to answer the question. For example, given the context “She married a lawyer from New-York.”, we don’t know whether the answer to the question “Did she marry in New York?” is “Yes” or “No”. In this paper, we extend the Yes/No QA task, adding questions with an IDK answer, and show its considerable difficulty compared to the original 2-label task. For this purpose, we (i) enrich the BoolQ dataset (Clark et al., 2019) to include unanswerable questions and (ii) create out-of-domain test sets for the Yes/No/IDK QA task. We study the contribution of training on other Natural Language Understanding tasks. We focus in particular on Extractive QA (Rajpurkar et al., 2018) and Recognizing Textual Entailments (RTE; Dagan et al., 2013), analyzing the differences between 2 and 3 labels using the new data.</abstract>
<identifier type="citekey">sulem-etal-2022-yes</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.79</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.79</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1075</start>
<end>1085</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Yes, No or IDK: The Challenge of Unanswerable Yes/No Questions
%A Sulem, Elior
%A Hay, Jamaal
%A Roth, Dan
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F sulem-etal-2022-yes
%X The Yes/No QA task (Clark et al., 2019) consists of “Yes” or “No” questions about a given context. However, in realistic scenarios, the information provided in the context is not always sufficient in order to answer the question. For example, given the context “She married a lawyer from New-York.”, we don’t know whether the answer to the question “Did she marry in New York?” is “Yes” or “No”. In this paper, we extend the Yes/No QA task, adding questions with an IDK answer, and show its considerable difficulty compared to the original 2-label task. For this purpose, we (i) enrich the BoolQ dataset (Clark et al., 2019) to include unanswerable questions and (ii) create out-of-domain test sets for the Yes/No/IDK QA task. We study the contribution of training on other Natural Language Understanding tasks. We focus in particular on Extractive QA (Rajpurkar et al., 2018) and Recognizing Textual Entailments (RTE; Dagan et al., 2013), analyzing the differences between 2 and 3 labels using the new data.
%R 10.18653/v1/2022.naacl-main.79
%U https://aclanthology.org/2022.naacl-main.79
%U https://doi.org/10.18653/v1/2022.naacl-main.79
%P 1075-1085
Markdown (Informal)
[Yes, No or IDK: The Challenge of Unanswerable Yes/No Questions](https://aclanthology.org/2022.naacl-main.79) (Sulem et al., NAACL 2022)
ACL
- Elior Sulem, Jamaal Hay, and Dan Roth. 2022. Yes, No or IDK: The Challenge of Unanswerable Yes/No Questions. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1075–1085, Seattle, United States. Association for Computational Linguistics.