@inproceedings{galperin-etal-2022-cross,
title = "Cross-Lingual {UMLS} Named Entity Linking using {UMLS} Dictionary Fine-Tuning",
author = "Galperin, Rina and
Schnapp, Shachar and
Elhadad, Michael",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.266",
doi = "10.18653/v1/2022.findings-acl.266",
pages = "3380--3390",
abstract = "We study cross-lingual UMLS named entity linking, where mentions in a given source language are mapped to UMLS concepts, most of which are labeled in English. Our cross-lingual framework includes an offline unsupervised construction of a translated UMLS dictionary and a per-document pipeline which identifies UMLS candidate mentions and uses a fine-tuned pretrained transformer language model to filter candidates according to context. Our method exploits a small dataset of manually annotated UMLS mentions in the source language and uses this supervised data in two ways: to extend the unsupervised UMLS dictionary and to fine-tune the contextual filtering of candidate mentions in full documents. We demonstrate results of our approach on both Hebrew and English. We achieve new state-of-the-art (SOTA) results on the Hebrew Camoni corpus, +8.9 F1 on average across three communities in the dataset. We also achieve new SOTA on the English dataset MedMentions with +7.3 F1.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="galperin-etal-2022-cross">
<titleInfo>
<title>Cross-Lingual UMLS Named Entity Linking using UMLS Dictionary Fine-Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rina</namePart>
<namePart type="family">Galperin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shachar</namePart>
<namePart type="family">Schnapp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Elhadad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study cross-lingual UMLS named entity linking, where mentions in a given source language are mapped to UMLS concepts, most of which are labeled in English. Our cross-lingual framework includes an offline unsupervised construction of a translated UMLS dictionary and a per-document pipeline which identifies UMLS candidate mentions and uses a fine-tuned pretrained transformer language model to filter candidates according to context. Our method exploits a small dataset of manually annotated UMLS mentions in the source language and uses this supervised data in two ways: to extend the unsupervised UMLS dictionary and to fine-tune the contextual filtering of candidate mentions in full documents. We demonstrate results of our approach on both Hebrew and English. We achieve new state-of-the-art (SOTA) results on the Hebrew Camoni corpus, +8.9 F1 on average across three communities in the dataset. We also achieve new SOTA on the English dataset MedMentions with +7.3 F1.</abstract>
<identifier type="citekey">galperin-etal-2022-cross</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.266</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.266</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>3380</start>
<end>3390</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual UMLS Named Entity Linking using UMLS Dictionary Fine-Tuning
%A Galperin, Rina
%A Schnapp, Shachar
%A Elhadad, Michael
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F galperin-etal-2022-cross
%X We study cross-lingual UMLS named entity linking, where mentions in a given source language are mapped to UMLS concepts, most of which are labeled in English. Our cross-lingual framework includes an offline unsupervised construction of a translated UMLS dictionary and a per-document pipeline which identifies UMLS candidate mentions and uses a fine-tuned pretrained transformer language model to filter candidates according to context. Our method exploits a small dataset of manually annotated UMLS mentions in the source language and uses this supervised data in two ways: to extend the unsupervised UMLS dictionary and to fine-tune the contextual filtering of candidate mentions in full documents. We demonstrate results of our approach on both Hebrew and English. We achieve new state-of-the-art (SOTA) results on the Hebrew Camoni corpus, +8.9 F1 on average across three communities in the dataset. We also achieve new SOTA on the English dataset MedMentions with +7.3 F1.
%R 10.18653/v1/2022.findings-acl.266
%U https://aclanthology.org/2022.findings-acl.266
%U https://doi.org/10.18653/v1/2022.findings-acl.266
%P 3380-3390
Markdown (Informal)
[Cross-Lingual UMLS Named Entity Linking using UMLS Dictionary Fine-Tuning](https://aclanthology.org/2022.findings-acl.266) (Galperin et al., Findings 2022)
ACL