@inproceedings{liu-niehues-2021-maastricht,
title = "Maastricht University{'}s Multilingual Speech Translation System for {IWSLT} 2021",
author = "Liu, Danni and
Niehues, Jan",
editor = "Federico, Marcello and
Waibel, Alex and
Costa-juss{\`a}, Marta R. and
Niehues, Jan and
Stuker, Sebastian and
Salesky, Elizabeth",
booktitle = "Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)",
month = aug,
year = "2021",
address = "Bangkok, Thailand (online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.iwslt-1.15",
doi = "10.18653/v1/2021.iwslt-1.15",
pages = "138--143",
abstract = "This paper describes Maastricht University{'}s participation in the IWSLT 2021 multilingual speech translation track. The task in this track is to build multilingual speech translation systems in supervised and zero-shot directions. Our primary system is an end-to-end model that performs both speech transcription and translation. We observe that the joint training for the two tasks is complementary especially when the speech translation data is scarce. On the source and target side, we use data augmentation and pseudo-labels respectively to improve the performance of our systems. We also introduce an ensembling technique that consistently improves the quality of transcriptions and translations. The experiments show that the end-to-end system is competitive with its cascaded counterpart especially in zero-shot conditions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-niehues-2021-maastricht">
<titleInfo>
<title>Maastricht University’s Multilingual Speech Translation System for IWSLT 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danni</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Niehues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Waibel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Niehues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Stuker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Maastricht University’s participation in the IWSLT 2021 multilingual speech translation track. The task in this track is to build multilingual speech translation systems in supervised and zero-shot directions. Our primary system is an end-to-end model that performs both speech transcription and translation. We observe that the joint training for the two tasks is complementary especially when the speech translation data is scarce. On the source and target side, we use data augmentation and pseudo-labels respectively to improve the performance of our systems. We also introduce an ensembling technique that consistently improves the quality of transcriptions and translations. The experiments show that the end-to-end system is competitive with its cascaded counterpart especially in zero-shot conditions.</abstract>
<identifier type="citekey">liu-niehues-2021-maastricht</identifier>
<identifier type="doi">10.18653/v1/2021.iwslt-1.15</identifier>
<location>
<url>https://aclanthology.org/2021.iwslt-1.15</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>138</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Maastricht University’s Multilingual Speech Translation System for IWSLT 2021
%A Liu, Danni
%A Niehues, Jan
%Y Federico, Marcello
%Y Waibel, Alex
%Y Costa-jussà, Marta R.
%Y Niehues, Jan
%Y Stuker, Sebastian
%Y Salesky, Elizabeth
%S Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand (online)
%F liu-niehues-2021-maastricht
%X This paper describes Maastricht University’s participation in the IWSLT 2021 multilingual speech translation track. The task in this track is to build multilingual speech translation systems in supervised and zero-shot directions. Our primary system is an end-to-end model that performs both speech transcription and translation. We observe that the joint training for the two tasks is complementary especially when the speech translation data is scarce. On the source and target side, we use data augmentation and pseudo-labels respectively to improve the performance of our systems. We also introduce an ensembling technique that consistently improves the quality of transcriptions and translations. The experiments show that the end-to-end system is competitive with its cascaded counterpart especially in zero-shot conditions.
%R 10.18653/v1/2021.iwslt-1.15
%U https://aclanthology.org/2021.iwslt-1.15
%U https://doi.org/10.18653/v1/2021.iwslt-1.15
%P 138-143
Markdown (Informal)
[Maastricht University’s Multilingual Speech Translation System for IWSLT 2021](https://aclanthology.org/2021.iwslt-1.15) (Liu & Niehues, IWSLT 2021)
ACL