@inproceedings{chen-sun-2020-parsing,
title = "Parsing into Variable-in-situ Logico-Semantic Graphs",
author = "Chen, Yufei and
Sun, Weiwei",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.605",
doi = "10.18653/v1/2020.acl-main.605",
pages = "6772--6782",
abstract = "We propose variable-in-situ logico-semantic graphs to bridge the gap between semantic graph and logical form parsing. The new type of graph-based meaning representation allows us to include analysis for scope-related phenomena, such as quantification, negation and modality, in a way that is consistent with the state-of-the-art underspecification approach. Moreover, the well-formedness of such a graph is clear, since model-theoretic interpretation is available. We demonstrate the effectiveness of this new perspective by developing a new state-of-the-art semantic parser for English Resource Semantics. At the core of this parser is a novel neural graph rewriting system which combines the strengths of Hyperedge Replacement Grammar, a knowledge-intensive model, and Graph Neural Networks, a data-intensive model. Our parser achieves an accuracy of 92.39{\%} in terms of elementary dependency match, which is a 2.88 point improvement over the best data-driven model in the literature. The output of our parser is highly coherent: at least 91{\%} graphs are valid, in that they allow at least one sound scope-resolved logical form.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-sun-2020-parsing">
<titleInfo>
<title>Parsing into Variable-in-situ Logico-Semantic Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yufei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose variable-in-situ logico-semantic graphs to bridge the gap between semantic graph and logical form parsing. The new type of graph-based meaning representation allows us to include analysis for scope-related phenomena, such as quantification, negation and modality, in a way that is consistent with the state-of-the-art underspecification approach. Moreover, the well-formedness of such a graph is clear, since model-theoretic interpretation is available. We demonstrate the effectiveness of this new perspective by developing a new state-of-the-art semantic parser for English Resource Semantics. At the core of this parser is a novel neural graph rewriting system which combines the strengths of Hyperedge Replacement Grammar, a knowledge-intensive model, and Graph Neural Networks, a data-intensive model. Our parser achieves an accuracy of 92.39% in terms of elementary dependency match, which is a 2.88 point improvement over the best data-driven model in the literature. The output of our parser is highly coherent: at least 91% graphs are valid, in that they allow at least one sound scope-resolved logical form.</abstract>
<identifier type="citekey">chen-sun-2020-parsing</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.605</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.605</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>6772</start>
<end>6782</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parsing into Variable-in-situ Logico-Semantic Graphs
%A Chen, Yufei
%A Sun, Weiwei
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F chen-sun-2020-parsing
%X We propose variable-in-situ logico-semantic graphs to bridge the gap between semantic graph and logical form parsing. The new type of graph-based meaning representation allows us to include analysis for scope-related phenomena, such as quantification, negation and modality, in a way that is consistent with the state-of-the-art underspecification approach. Moreover, the well-formedness of such a graph is clear, since model-theoretic interpretation is available. We demonstrate the effectiveness of this new perspective by developing a new state-of-the-art semantic parser for English Resource Semantics. At the core of this parser is a novel neural graph rewriting system which combines the strengths of Hyperedge Replacement Grammar, a knowledge-intensive model, and Graph Neural Networks, a data-intensive model. Our parser achieves an accuracy of 92.39% in terms of elementary dependency match, which is a 2.88 point improvement over the best data-driven model in the literature. The output of our parser is highly coherent: at least 91% graphs are valid, in that they allow at least one sound scope-resolved logical form.
%R 10.18653/v1/2020.acl-main.605
%U https://aclanthology.org/2020.acl-main.605
%U https://doi.org/10.18653/v1/2020.acl-main.605
%P 6772-6782
Markdown (Informal)
[Parsing into Variable-in-situ Logico-Semantic Graphs](https://aclanthology.org/2020.acl-main.605) (Chen & Sun, ACL 2020)
ACL