@inproceedings{guellil-etal-2018-arabizi,
title = "{A}rabizi sentiment analysis based on transliteration and automatic corpus annotation",
author = "Guellil, Imane and
Adeel, Ahsan and
Azouaou, Faical and
Benali, Fodil and
Hachani, Ala-eddine and
Hussain, Amir",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6249",
doi = "10.18653/v1/W18-6249",
pages = "335--341",
abstract = "Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78{\%} and 76{\%} for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guellil-etal-2018-arabizi">
<titleInfo>
<title>Arabizi sentiment analysis based on transliteration and automatic corpus annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Imane</namePart>
<namePart type="family">Guellil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahsan</namePart>
<namePart type="family">Adeel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faical</namePart>
<namePart type="family">Azouaou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fodil</namePart>
<namePart type="family">Benali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ala-eddine</namePart>
<namePart type="family">Hachani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Hussain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78% and 76% for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.</abstract>
<identifier type="citekey">guellil-etal-2018-arabizi</identifier>
<identifier type="doi">10.18653/v1/W18-6249</identifier>
<location>
<url>https://aclanthology.org/W18-6249</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>335</start>
<end>341</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Arabizi sentiment analysis based on transliteration and automatic corpus annotation
%A Guellil, Imane
%A Adeel, Ahsan
%A Azouaou, Faical
%A Benali, Fodil
%A Hachani, Ala-eddine
%A Hussain, Amir
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F guellil-etal-2018-arabizi
%X Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78% and 76% for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.
%R 10.18653/v1/W18-6249
%U https://aclanthology.org/W18-6249
%U https://doi.org/10.18653/v1/W18-6249
%P 335-341
Markdown (Informal)
[Arabizi sentiment analysis based on transliteration and automatic corpus annotation](https://aclanthology.org/W18-6249) (Guellil et al., WASSA 2018)
ACL