Nothing Special   »   [go: up one dir, main page]

Faical Azouaou


2024

pdf bib
The Annotators Agree to Not Agree on the Fine-grained Annotation of Hate-speech against Women in Algerian Dialect Comments
Imane Guellil | Yousra Houichi | Sara Chennoufi | Mohamed Boubred | Anfal Yousra Boucetta | Faical Azouaou
Proceedings of the Fifth Workshop on Resources for African Indigenous Languages @ LREC-COLING 2024

A significant number of research studies have been presented for detecting hate speech in social media during the last few years. However, the majority of these studies are in English. Only a few studies focus on Arabic and its dialects (especially the Algerian dialect) with a smaller number of them targeting sexism detection (or hate speech against women). Even the works that have been proposed on Arabic sexism detection consider two classes only (hateful and non-hateful), and three classes(adding the neutral class) in the best scenario. This paper aims to propose the first fine-grained corpus focusing on 13 classes. However, given the challenges related to hate speech and fine-grained annotation, the Kappa metric is relatively low among the annotators (i.e. 35% ). This work in progress proposes three main contributions: 1) Annotation of different categories related to hate speech such as insults, vulgar words or hate in general. 2) Annotation of 10,000 comments, in Arabic and Algerian dialects, automatically extracted from Youtube. 3) High-lighting the challenges related to manual annotation such as subjectivity, risk of bias, lack of annotation guidelines, etc

2022

pdf bib
Ara-Women-Hate: An Annotated Corpus Dedicated to Hate Speech Detection against Women in the Arabic Community
Imane Guellil | Ahsan Adeel | Faical Azouaou | Mohamed Boubred | Yousra Houichi | Akram Abdelhaq Moumna
Proceedings of the Workshop on Dataset Creation for Lower-Resourced Languages within the 13th Language Resources and Evaluation Conference

In this paper, an approach for hate speech detection against women in the Arabic community on social media (e.g. Youtube) is proposed. In the literature, similar works have been presented for other languages such as English. However, to the best of our knowledge, not much work has been conducted in the Arabic language. A new hate speech corpus (Arabic_fr_en) is developed using three different annotators. For corpus validation, three different machine learning algorithms are used, including deep Convolutional Neural Network (CNN), long short-term memory (LSTM) network and Bi-directional LSTM (Bi-LSTM) network. Simulation results demonstrate the best performa

2021

pdf bib
ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects
Imane Guellil | Faical Azouaou | Fodil Benali | Hachani Ala-Eddine
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country use at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.

2018

pdf bib
Arabizi sentiment analysis based on transliteration and automatic corpus annotation
Imane Guellil | Ahsan Adeel | Faical Azouaou | Fodil Benali | Ala-eddine Hachani | Amir Hussain
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78% and 76% for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.

2017

pdf bib
Une approche fondée sur les lexiques d’analyse de sentiments du dialecte algérien [A lexicon-based approach for sentiment analysis in the Algerian dialect]
Imane Guellil | Faical Azouaou | Houda Saâdane | Nasredine Semmar
Traitement Automatique des Langues, Volume 58, Numéro 3 : Traitement automatique de l'arabe et des langues apparentées [NLP for Arabic and Related Languages]