Nothing Special   »   [go: up one dir, main page]

Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Cho-Jui Hsieh


Abstract
Visual language grounding is widely studied in modern neural image captioning systems, which typically adopts an encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for language caption generation. To study the robustness of language grounding to adversarial perturbations in machine vision and perception, we propose Show-and-Fool, a novel algorithm for crafting adversarial examples in neural image captioning. The proposed algorithm provides two evaluation approaches, which check if we can mislead neural image captioning systems to output some randomly chosen captions or keywords. Our extensive experiments show that our algorithm can successfully craft visually-similar adversarial examples with randomly targeted captions or keywords, and the adversarial examples can be made highly transferable to other image captioning systems. Consequently, our approach leads to new robustness implications of neural image captioning and novel insights in visual language grounding.
Anthology ID:
P18-1241
Volume:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2018
Address:
Melbourne, Australia
Editors:
Iryna Gurevych, Yusuke Miyao
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2587–2597
Language:
URL:
https://aclanthology.org/P18-1241
DOI:
10.18653/v1/P18-1241
Bibkey:
Cite (ACL):
Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. 2018. Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2587–2597, Melbourne, Australia. Association for Computational Linguistics.
Cite (Informal):
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning (Chen et al., ACL 2018)
Copy Citation:
PDF:
https://aclanthology.org/P18-1241.pdf
Note:
 P18-1241.Notes.pdf
Poster:
 P18-1241.Poster.pdf
Code
 huanzhang12/ImageCaptioningAttack +  additional community code
Data
MS COCO