Nothing Special   »   [go: up one dir, main page]

Logo des Repositoriums
 
Textdokument

Using Transfer Learning for Quality Improved Forecasting of Temporal Agricultural Processes by Adapting Convolutional Neural Networks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

AI-based decision support can help farmers to reach improved productivity in an environmentally sustainable way. Through transfer learning, an existing Convolutional Neural Network is progressively adapted to provide high quality forecasting results using agricultural time series in the context of different locations, growth and soil types, climate zones, and management variations. The delivered results are validated by appropriate statistical methods and show improved prediction accuracy.

Beschreibung

Münzberg,Alexander; Troost,Christian; Bernardi,Ansgar (2022): Using Transfer Learning for Quality Improved Forecasting of Temporal Agricultural Processes by Adapting Convolutional Neural Networks. INFORMATIK 2022. DOI: 10.18420/inf2022_128. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 1495-1503. Künstliche Intelligenz in der Umweltinformatik (KIU-2022). Hamburg. 26.-30. September 2022

Zitierform

Tags