Abstract
Unsupervised domain adaptation enables neural networks to transfer from a labeled source domain to an unlabeled target domain by learning domain-invariant representations. Recent approaches achieve this by directly matching the marginal distributions of these two domains. Most of them, however, ignore exploration of the dynamic trade-off between domain alignment and semantic discrimination learning, thus rendering them susceptible to the problems of negative transfer and outlier samples. To address these issues, we introduce the dynamic parameterized learning framework. First, by exploring domain-level semantic knowledge, the dynamic alignment parameter is proposed, to adaptively adjust the optimization steps of domain alignment and semantic discrimination learning. Besides, for obtaining semantic-discriminative and domain-invariant representations, we propose to align training trajectories on both source and target domains. Comprehensive experiments are conducted to validate the effectiveness of the proposed methods, and extensive comparisons are conducted on seven datasets of three visual tasks to demonstrate their practicability.
摘要
无监督领域自适应通过学习域不变表示实现神经网络从有标签数据组成的源域到无标签数据组成的目标域迁移. 近期研究通过直接匹配这两个域的边缘分布实现这一目标. 然而, 已有研究大多数忽略域对齐和语义判别学习之间的动态平衡, 因此容易受负迁移和异常样本影响. 为解决这些问题, 引入动态参数化学习框架. 首先, 通过探索领域级语义知识, 提出动态对齐参数自适应地调整域对齐和语义判别学习的优化过程. 此外, 为获得判别能力强和域不变的表示, 提出在源域和目标域上对齐优化过程. 本文通过综合实验证明了所提出方法的有效性, 并在3个视觉任务的7个数据集上进行广泛比较, 证明可行性.
Data availability
The data that support the findings of this study are openly available in Transfer-Learning-Library at https://github.com/thuml/Transfer-Learning-Library.
References
Ahmed SM, Raychaudhuri DS, Paul S, et al., 2021. Unsupervised multi-source domain adaptation without access to source data. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10103–10112. https://doi.org/10.1109/CVPR46437.2021.00997
Bai Y, Wang C, Lou YH, et al., 2021. Hierarchical connectivity-centered clustering for unsupervised domain adaptation on person re-identification. IEEE Trans Image Process, 30:6715–6729. https://doi.org/10.1109/TIP.2021.3094140
Bai ZC, Wang ZG, Wang J, et al., 2021. Unsupervised multi-source domain adaptation for person re-identification. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.12914–12923. https://doi.org/10.1109/CVPR46437.2021.01272
Balgi S, Dukkipati A, 2022. Contradistinguisher: a Vapnik’s imperative to unsupervised domain adaptation. IEEE Trans Patt Anal Mach Intell, 44(9):4730–4747. https://doi.org/10.1109/TPAMI.2021.3071225
Cazenavette G, Wang TZ, Torralba A, et al., 2022. Dataset distillation by matching training trajectories. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4750–4759. https://doi.org/10.1109/CVPR52688.2022.01045
Chang WG, You T, Seo S, et al., 2019. Domain-specific batch normalization for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7354–7362. https://doi.org/10.1109/CVPR.2019.00753
Chen MH, Zhao S, Liu HF, et al., 2020. Adversarial-learned loss for domain adaptation. Proc 34th AAAI Conf on Artificial Intelligence, p.3521–3528. https://doi.org/10.1609/aaai.v34i04.5757
Chen XY, Wang SN, Wang JM, et al., 2021. Representation subspace distance for domain adaptation regression. Proc 38th Int Conf on Machine Learning, p.1749–1759.
Courty N, Flamary R, Habrard A, et al., 2017. Joint distribution optimal transportation for domain adaptation. Proc 31st Int Conf on Neural Information Processing Systems, p.3733–3742.
Dai YX, Liu J, Sun YF, et al., 2021. IDM: an intermediate domain module for domain adaptive person Re-ID. Proc IEEE/CVF Int Conf on Computer Vision, p.11864–11874. https://doi.org/10.1109/ICCV48922.2021.01165
Fu Y, Wei YC, Wang GS, et al., 2019. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. Proc IEEE/CVF Int Conf on Computer Vision, p.6112–6121. https://doi.org/10.1109/ICCV.2019.00621
Ganin Y, Lempitsky V, 2015. Unsupervised domain adaptation by backpropagation. Proc 32nd Int Conf on Machine Learning, p.1180–1189.
Ganin Y, Ustinova E, Ajakan H, et al., 2016. Domain-adversarial training of neural networks. In: Csurka G, (Ed.), Domain Adaptation in Computer Vision Applications. Advances in Computer Vision and Pattern Recognition. Springer, Cham, p.189–209. https://doi.org/10.1007/978-3-319-58347-1_10
Ge Y, Chen DP, Li HS, 2020. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. Proc 8th Int Conf on Learning Representations.
Gondal MW, Wuthrich M, Miladinovic D, et al., 2019. On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset. Proc 33rd Int Conf on Neural Information Processing Systems, Article 1410.
Han YH, Wu AM, Zhu LC, et al., 2021. Visual commonsense reasoning with directional visual connections. Front Inform Technol Electron Eng, 22(5):625–637. https://doi.org/10.1631/FITEE.2000722
Han ZY, Sun HL, Yin YL, 2022. Learning transferable parameters for unsupervised domain adaptation. IEEE Trans Image Process, 31:6424–6439. https://doi.org/10.1109/TIP.2022.3184848
He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770–778. https://doi.org/10.1109/CVPR.2016.90
Higgins I, Matthey L, Pal A, et al., 2016. beta-VAE: learning basic visual concepts with a constrained variational framework. Proc 5th Int Conf on Learning Representations.
Jing MM, Meng LC, Li JJ, et al., 2022. Adversarial mixup ratio confusion for unsupervised domain adaptation. IEEE Trans Multimedia, 25:2559–2572. https://doi.org/10.1109/TMM.2022.3148592
Li MX, Zhai YM, Luo YW, et al., 2020. Enhanced transport distance for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.13936–13944. https://doi.org/10.1109/CVPR42600.2020.01395
Li QB, He BS, Song D, 2021. Model-contrastive federated learning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognitionn, p.10713–10722. https://doi.org/10.1109/CVPR46437.2021.01057
Li S, Xie MX, Lv FR, et al., 2021a. Semantic concentration for domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.9102–9111. https://doi.org/10.1109/ICCV48922.2021.00897
Li S, Xie MX, Gong KX, et al., 2021b. Transferable semantic augmentation for domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11516–11525. https://doi.org/10.1109/CVPR46437.2021.01057
Li WK, Chen SC, 2022. Partial domain adaptation without domain alignment. IEEE Trans Patt Anal Mach Intell, 45(7):8787–8797. https://doi.org/10.1109/TPAMI.2022.3228937
Li YJ, Lin CS, Lin YB, et al., 2019. Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.7919–7929. https://doi.org/10.1109/ICCV.2019.00801
Li YY, Yao HT, Xu CS, 2022. Intra-domain consistency enhancement for unsupervised person re-identification. IEEE Trans Multimedia, 24:415–425. https://doi.org/10.1109/TMM.2021.3052354
Liang J, Hu DP, Feng JS, 2020. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. Proc 37th Int Conf on Machine Learning, Article 560.
Liu H, Wang JM, Long MS, 2021. Cycle self-training for domain adaptation. Proc 35th Advances in Neural Information Processing Systems, p.22968–22981.
Long MS, Cao Y, Wang JM, et al., 2015. Learning transferable features with deep adaptation networks. Proc 32nd Int Conf on Machine Learning, p.97–105.
Long MS, Zhu H, Wang JM, et al., 2017. Deep transfer learning with joint adaptation networks. Proc 34th Int Conf on Machine Learning, p.2208–2217.
Lu YW, Li DS, Wang WJ, et al., 2021. Discriminative invariant alignment for unsupervised domain adaptation. IEEE Trans Multimedia, 24:1871–1882. https://doi.org/10.1109/TMM.2021.3073258
Luo CC, Song CF, Zhang ZX, 2020. Generalizing person reidentification by camera-aware invariance learning and cross-domain mixup. Proc 16th European Conf on Computer Vision, p.224–241. https://doi.org/10.1007/978-3-030-58555-6_14
Luo YW, Ren CX, 2021. Conditional bures metric for domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.13989–13998. https://doi.org/10.1109/CVPR46437.2021.01377
Pan SJ, Tsang IW, Kwok JT, et al., 2011. Domain adaptation via transfer component analysis. IEEE Trans Neur Netw, 22(2):199–210. https://doi.org/10.1109/TNN.2010.2091281
Pan YW, Yao T, Li YH, et al., 2019. Transferrable prototypical networks for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2239–2247. https://doi.org/10.1109/CVPR.2019.00234
Peng XC, Bai QX, Xia XD, et al., 2019. Moment matching for multi-source domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.1406–1415. https://doi.org/10.1109/ICCV.2019.00149
Rakshit S, Banerjee B, Roig G, et al., 2019. Unsupervised multi-source domain adaptation driven by deep adversarial ensemble learning. Proc 41st German Conf on Pattern Recognition, p.485–498. https://doi.org/10.1007/978-3-030-33676-9_34
Ristani E, Solera F, Zou R, et al., 2016. Performance measures and a data set for multi-target, multi-camera tracking. European Conf on Computer Vision, p.17–35. https://doi.org/10.1007/978-3-319-48881-3_2
Saenko K, Kulis B, Fritz M, et al., 2010. Adapting visual category models to new domains. Proc 11th European Conf on Computer Vision, p.213–226. https://doi.org/10.1007/978-3-642-15561-1_16
Saito K, Watanabe K, Ushiku Y, et al., 2018. Maximum classifier discrepancy for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3723–3732. https://doi.org/10.1109/CVPR.2018.00392
Sun BC, Feng JS, Saenko K, 2016. Return of frustratingly easy domain adaptation. Proc 30th AAAI Conf on Artificial Intelligence, p.2058–2065.
Tanwisuth K, Fan XJ, Zheng HJ, et al., 2021. A prototype-oriented framework for unsupervised domain adaptation. Proc 35th Conf on Neural Information Processing Systems, p.17194–17208.
Tao XF, Kong J, Jiang M, et al., 2022. Unsupervised domain adaptation by multi-loss gap minimization learning for person re-identification. IEEE Trans Circ Syst Video Technol, 32(7):4404–4416. https://doi.org/10.1109/TCSVT.2021.3135274
Tian Q, Zhu YN, Sun HY, et al., 2022. Unsupervised domain adaptation through dynamically aligning both the feature and label spaces. IEEE Trans Circ Syst Video Technol, 32(12):8562–8573. https://doi.org/10.1109/TCSVT.2022.3192135
Venkat N, Kundu JN, Singh DK, et al., 2020. Your classifier can secretly suffice multi-source domain adaptation. Proc 34th Int Conf on Neural Information Processing Systems, Article 390.
Venkateswara H, Eusebio J, Chakraborty S, et al., 2017. Deep hashing network for unsupervised domain adaptation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.5018–5027. https://doi.org/10.1109/CVPR.2017.572
Wang DK, Zhang SL, 2020. Unsupervised person reidentification via multi-label classification. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10981–10990. https://doi.org/10.1109/CVPR42600.2020.01099
Wang W, Zhao F, Liao S, et al., 2022. Attentive waveblock: complementarity-enhanced mutual networks for unsupervised domain adaptation in person re-identification and beyond. IEEE Trans Image Process, 31:1532–1544. https://doi.org/10.1109/TIP.2022.3140614
Wang XM, Li L, Ye WR, et al., 2019. Transferable attention for domain adaptation. Proc 33rd AAAI Conf on Artificial Intelligence, p.5345–5352. https://doi.org/10.1609/aaai.v33i01.33015345
Wei GQ, Lan CL, Zeng WJ, et al., 2021. MetaAlign: coordinating domain alignment and classification for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.16643–16653. https://doi.org/10.1109/CVPR46437.2021.01637
Wei LH, Zhang SL, Gao W, et al., 2018. Person transfer GAN to bridge domain gap for person re-identification. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.79–88. https://doi.org/10.1109/CVPR.2018.00016
Wu AM, Han YH, Zhu LC, et al., 2022. Instance-invariant domain adaptive object detection via progressive disentanglement. IEEE Trans Patt Anal Mach Intell, 44(8):4178–4193. https://doi.org/10.1109/TPAMI.2021.3060446
Wu KH, Jia F, Han YH, 2023. Domain-specific feature elimination: multi-source domain adaptation for image classification. Front Comput Sci, 17(4):174705. https://doi.org/10.1007/s11704-022-2146-x
Xiao N, Zhang L, 2021. Dynamic weighted learning for unsupervised domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.15242–15251. https://doi.org/10.1109/CVPR46437.2021.01499
Xu RJ, Chen ZL, Zuo WM, et al., 2018. Deep cocktail network: multi-source unsupervised domain adaptation with category shift. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3964–3973. https://doi.org/10.1109/CVPR.2018.00417
Xu RJ, Li GB, Yang JH, et al., 2019. Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. Proc IEEE/CVF Int Conf on Computer Vision, p.1426–1435. https://doi.org/10.1109/ICCV.2019.00151
Xu X, Zhang LY, 2021. Rectifying pseudo label by mutual disagreement learning for unsupervised domain adaptation person re-identification. Proc IEEE Int Conf on Multimedia and Expo, p.1–6. https://doi.org/10.1109/ICME51207.2021.9428307
Xu YY, Yan H, 2022. Cycle-reconstructive subspace learning with class discriminability for unsupervised domain adaptation. Patt Recognit, 129:108700. https://doi.org/10.1016/j.patcog.2022.108700
Yang SQ, van de Weijer J, Herranz L, et al., 2021. Exploiting the intrinsic neighborhood structure for source-free domain adaptation. Proc 35th Advances in Neural Information Processing Systems, p.29393–29405.
Yang YC, Soatto S, 2020. FDA: Fourier domain adaptation for semantic segmentation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4085–4095. https://doi.org/10.1109/CVPR42600.2020.00414
Zhai YP, Lu SJ, Ye QX, et al., 2020. AD-Cluster: augmented discriminative clustering for domain adaptive person reidentification. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9021–9030. https://doi.org/10.1109/CVPR42600.2020.00904
Zhang H, Cao HH, Yang X, et al., 2021. Self-training with progressive representation enhancement for unsupervised cross-domain person re-identification. IEEE Trans Image Process, 30:5287–5298. https://doi.org/10.1109/TIP.2021.3082298
Zhang JY, Huang JX, Tian ZC, et al., 2022. Spectral unsupervised domain adaptation for visual recognition. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9829–9840. https://doi.org/10.1109/CVPR52688.2022.00960
Zhang MY, Liu K, Li YD, et al., 2021. Unsupervised domain adaptation for person re-identification via heterogeneous graph alignment. Proc 35th AAAI Conf on Artificial Intelligence, p.3360–3368. https://doi.org/10.1609/aaai.v35i4.16448
Zhang YB, Tang H, Jia K, et al., 2019. Domain-symmetric networks for adversarial domain adaptation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5031–5040. https://doi.org/10.1109/CVPR.2019.00517
Zhang YB, Deng B, Tang H, et al., 2020. Unsupervised multi-class domain adaptation: theory, algorithms, and practice. IEEE Trans Patt Anal Mach Intell, 44(5):2775–2792. https://doi.org/10.1109/TPAMI.2020.3036956
Zhang YC, Liu TL, Long MS, et al., 2019. Bridging theory and algorithm for domain adaptation. Proc 36th Int Conf on Machine Learning, p.7404–7413.
Zhang Z, Wang YN, Liu S, et al., 2022. Cross-domain person re-identification using heterogeneous convolutional network. IEEE Trans Circ Syst Video Technol, 32(3):1160–1171. https://doi.org/10.1109/TCSVT.2021.3074745
Zhao F, Liao SC, Xie GS, et al., 2020. Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. Proc 16th European Conf on Computer Vision, p.526–544. https://doi.org/10.1007/978-3-030-58621-8_31
Zhao SC, Li B, Xu PF, et al., 2021. MADAN: multi-source adversarial domain aggregation network for domain adaptation. Int J Comput Vis, 129(8):2399–2424. https://doi.org/10.1007/s11263-021-01479-3
Zheng L, Shen LY, Tian L, et al., 2015. Scalable person re-identification: a benchmark. Proc IEEE Int Conf on Computer Vision, p.1116–1124. https://doi.org/10.1109/ICCV.2015.133
Zhong Z, Zheng L, Luo ZM, et al., 2019. Invariance matters: exemplar memory for domain adaptive person re-identification. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.598–607. https://doi.org/10.1109/CVPR.2019.00069
Zhong Z, Zheng L, Luo ZM, et al., 2021. Learning to adapt invariance in memory for person re-identification. IEEE Trans Patt Anal Mach Intell, 43(8):2723–2738. https://doi.org/10.1109/TPAMI.2020.2976933
Zhu YC, Zhuang FZ, Wang DQ, 2019. Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. Proc 33rd AAAI Conf on Artificial Intelligence, p.5989–5996. https://doi.org/10.1609/aaai.v33i01.33015989
Zhu YC, Zhuang FZ, Wang JD, et al., 2021. Deep subdomain adaptation network for image classification. IEEE Trans Neur Netw Learn Syst, 32(4):1713–1722. https://doi.org/10.1109/TNNLS.2020.2988928
Zuo YK, Yao HT, Zhuang LS, et al., 2022. Margin-based adversarial joint alignment domain adaptation. IEEE Trans Circ Syst Video Technol, 32(4):2057–2067. https://doi.org/10.1109/TCSVT.2021.3081729
Author information
Authors and Affiliations
Contributions
Runhua JIANG designed the research and drafted the paper. Yahong HAN helped organize the paper. Runhua JIANG revised and finalized the paper.
Corresponding author
Ethics declarations
Yahong HAN is a corresponding expert of Frontiers of Information Technology & Electronic Engineering, and he was not involved with the peer review process of this paper. Runhua JIANG and Yahong HAN declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 61932009) and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study, China
Rights and permissions
About this article
Cite this article
Jiang, R., Han, Y. Dynamic parameterized learning for unsupervised domain adaptation. Front Inform Technol Electron Eng 24, 1616–1632 (2023). https://doi.org/10.1631/FITEE.2200631
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200631