Abstract
To boost research into cognition-level visual understanding, i.e., making an accurate inference based on a thorough understanding of visual details, visual commonsense reasoning (VCR) has been proposed. Compared with traditional visual question answering which requires models to select correct answers, VCR requires models to select not only the correct answers, but also the correct rationales. Recent research into human cognition has indicated that brain function or cognition can be considered as a global and dynamic integration of local neuron connectivity, which is helpful in solving specific cognition tasks. Inspired by this idea, we propose a directional connective network to achieve VCR by dynamically reorganizing the visual neuron connectivity that is contextualized using the meaning of questions and answers and leveraging the directional information to enhance the reasoning ability. Specifically, we first develop a GraphVLAD module to capture visual neuron connectivity to fully model visual content correlations. Then, a contextualization process is proposed to fuse sentence representations with visual neuron representations. Finally, based on the output of contextualized connectivity, we propose directional connectivity to infer answers and rationales, which includes a ReasonVLAD module. Experimental results on the VCR dataset and visualization analysis demonstrate the effectiveness of our method.
摘要
为推动认知层面视觉内容理解的研究, 即基于视觉细节的深入理解做出精确推理, 视觉常识推理的概念被提出. 相比仅需模型正确回答问题的传统视觉问答, 视觉常识推理不仅需要模型正确地回答问题, 还需给出相应解释. 最近关于人类认知的研究指出大脑认知可以看作局部神经元连接的全局动态集成, 有助于解决特定的认知任务. 受其启发, 本文提出有向连接网络. 通过使用问题和答案的语义来情景化视觉神经元从而动态重组神经元连接, 以及借助方向信息增强推理能力, 所提方法能有效实现视觉常识推理. 具体地, 首先开发一个GraphVLAD模块来捕捉能够充分表达视觉内容相关性的视觉神经元连接. 然后提出一个情景化模型来融合视觉和文本表示. 最后, 基于情景化连接的输出设计有向连接来推断答案及对应解释, 其中包含了ReasonVLAD模块. 实验结果和可视化分析证明了所提方法的有效性.
Similar content being viewed by others
References
Anderson P, He XD, Buehler C, et al., 2018. Bottom-up and top-down attention for image captioning and visual question answering. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.6077–6086. https://doi.org/10.1109/CVPR.2018.00636
Antol S, Agrawal A, Lu JS, et al., 2015. VQA: visual question answering. Proc IEEE Int Conf on Computer Vision, p.2425–2433. https://doi.org/10.1109/ICCV.2015.279
Arandjelović R, Gronat P, Torii A, et al., 2018. NetVLAD: CNN architecture for weakly supervised place recognition. IEEE Trans Patt Anal Mach Intell, 40(6):1437–1451. https://doi.org/10.1109/TPAMI.2017.2711011
Badrinarayanan V, Kendall A, Cipolla R, 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Patt Anal Mach Intell, 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
Bansal A, Zhang YT, Chellappa R, 2020. Visual question answering on image sets. European Conf on Computer Vision, p.51–67. https://doi.org/10.1007/978-3-030-58589-1_4
Ben-younes H, Cadene R, Cord M, et al., 2017. MUTAN: multimodal tucker fusion for visual question answering. Proc IEEE Int Conf on Computer Vision, p.2631–2639. https://doi.org/10.1109/ICCV.2017.285
Bola M, Sabel BA, 2015. Dynamic reorganization of brain functional networks during cognition. NeuroImage, 114:398–413. https://doi.org/10.1016/j.neuroimage.2015.03.057
Cadene R, Ben-younes H, Cord M, et al., 2019. MUREL: multimodal relational reasoning for visual question answering. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1989–1998. https://doi.org/10.1109/CVPR.2019.00209
Chen L, Yan X, Xiao J, et al., 2020. Counterfactual samples synthesizing for robust visual question answering. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10797–10806. https://doi.org/10.1109/CVPR42600.2020.01081
Chen LC, Papandreou G, Kokkinos I, et al., 2018. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Patt Anal Mach Intell, 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184
Chen YP, Rohrbach M, Yan ZC, et al., 2019. Graph-based global reasoning networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.433–442. https://doi.org/10.1109/CVPR.2019.00052
Devlin J, Chang MW, Lee K, et al., 2019. BERT: pre-training of deep bidirectional transformers for language understanding. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), p.4171–4186. https://doi.org/10.18653/v1/N19-1423
Feltovich PJ, Ford KM, Hoffman RR, 1997. Expertise in Context: Human and Machine. MIT Press, Cambridge, MA, USA, p.67–99.
Gao P, Li H, Li S, et al., 2018. Question-guided hybrid convolution for visual question answering. European Conf on Computer Vision, p.485–501. https://doi.org/10.1007/978-3-030-01246-5_29
Girshick R, 2015. Fast R-CNN. Proc IEEE Int Conf on Computer Vision, p.1440–1448. https://doi.org/10.1109/ICCV.2015.169
Goyal Y, Khot T, Summers-Stay D, et al., 2017. Making the V in VQA matter: elevating the role of image understanding in visual question answering. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.6325–6334.
He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770–778.
Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Jégou H, Douze M, Schmid C, et al., 2010. Aggregating local descriptors into a compact image representation. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.3304–3311. https://doi.org/10.1109/CVPR.2010.5540039
Kim KM, Choi SH, Kim JH, et al., 2018. Multimodal dual attention memory for video story question answering. https://arxiv.org/abs/1809.07999
Kipf TN, Welling M, 2016. Semi-supervised classification with graph convolutional networks. https://arxiv.org/abs/1609.02907v4
Le TM, Le V, Venkatesh S, et al., 2020. Hierarchical conditional relation networks for video question answering. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9969–9978. https://doi.org/10.1109/CVPR42600.2020.00999
Li G, Duan N, Fang YJ, et al., 2020. Unicoder-VL: a universal encoder for vision and language by cross-modal pre-training. Proc AAAI Conf on Artificial Intelligence, p.11336–11344. https://doi.org/10.1609/aaai.v34i07.6795
Li LH, Yatskar M, Yin D, et al., 2019. VisualBERT: a simple and performant baseline for vision and language. https://arxiv.org/abs/1908.03557
Liu W, Anguelov D, Erhan D, et al., 2016. SSD: single shot multibox detector. European Conf on Computer Vision, p.21–37. https://doi.org/10.1007/978-3-319-46448-0_2
Lu JS, Xiong CM, Parikh D, et al., 2017. Knowing when to look: adaptive attention via a visual sentinel for image captioning. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.3242–3250. https://doi.org/10.1109/CVPR.2017.345
Lu JS, Batra D, Parikh D, et al., 2019. ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. https://arxiv.org/abs/1908.02265
Malinowski M, Doersch C, Santoro A, et al., 2018. Learning visual question answering by bootstrapping hard attention. European Conf on Computer Vision, p.3–20. https://doi.org/10.1007/978-3-030-01231-1_1
Monti F, Boscaini D, Masci J, et al., 2017. Geometric deep learning on graphs and manifolds using mixture model CNNs. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.5425–5434. https://doi.org/10.1109/CVPR.2017.576
Narasimhan M, Lazebnik S, Schwing AG, 2018. Out of the box: reasoning with graph convolution nets for factual visual question answering. Proc 32nd Int Conf on Neural Information Processing Systems, p.2659–2670.
Norcliffe-Brown W, Vafeias ES, Parisot S, 2018. Learning conditioned graph structures for interpretable visual question answering. https://arxiv.org/abs/1806.07243
Pan YH, 2019. On visual knowledge. Front Inform Technol Electron Eng, 20(8):1021–1025. https://doi.org/10.1631/FITEE.1910001
Pan YH, 2020. Miniaturized five fundamental issues about visual knowledge. Front Inform Technol Electron Eng, online. https://doi.org/10.1631/FITEE.2040000
Park HJ, Friston K, 2013. Structural and functional brain networks: from connections to cognition. Science, 342(6158):1238411. https://doi.org/10.1126/science.1238411
Perez E, Strub F, de Vries H, et al., 2017. FiLM: visual reasoning with a general conditioning layer. https://arxiv.org/abs/1709.07871v2
Schwartz I, Yu S, Hazan T, et al., 2019. Factor graph attention. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2039–2048. https://doi.org/10.1109/CVPR.2019.00214
Su WJ, Zhu XZ, Cao Y, et al., 2019. VL-BERT: pre-training of generic visual-linguistic representations. https://arxiv.org/abs/1908.08530v1
van der Maaten L, Hinton G, 2008. Visualizing data using t-SNE. J Mach Learn Res, 9:2579–2605.
Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000–6010.
Veličković P, Cucurull G, Casanova A, et al., 2018. Graph attention networks. Proc Int Conf on Learning Representations.
Wu AM, Zhu LC, Han YH, et al., 2019. Connective cognition network for directional visual commonsense reasoning. Proc 33rd Conf on Neural Information Processing Systems, p.5669–5679.
Xu K, Ba JL, Kiros R, et al., 2015. Show, attend and tell: neural image caption generation with visual attention. Proc 32nd Int Conf on Machine Learning, p.2048–2057.
Xu K, Wu LF, Wang ZG, et al., 2018. Exploiting rich syntactic information for semantic parsing with graph-to-sequence model. Proc Conf on Empirical Methods in Natural Language Processing, p.918–924.
Zellers R, Bisk Y, Farhadi A, et al., 2019. From recognition to cognition: visual commonsense reasoning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.6713–6724. https://doi.org/10.1109/CVPR.2019.00688
Zhou J, Cui GQ, Zhang ZY, et al., 2018. Graph neural networks: a review of methods and applications. https://arxiv.org/abs/1812.08434v3
Author information
Authors and Affiliations
Contributions
Yahong HAN designed the research. Aming WU conducted the experiments and drafted the manuscript. Linchao ZHU helped organize the manuscript. Yi YANG revised the paper.
Corresponding author
Ethics declarations
Yahong HAN, Aming WU, Linchao ZHU, and Yi YANG declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61876130 and 61932009)
Rights and permissions
About this article
Cite this article
Han, Y., Wu, A., Zhu, L. et al. Visual commonsense reasoning with directional visual connections. Front Inform Technol Electron Eng 22, 625–637 (2021). https://doi.org/10.1631/FITEE.2000722
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000722
Key words
- Visual commonsense reasoning
- Directional connective network
- Visual neuron connectivity
- Contextualized connectivity
- Directional connectivity