2015 Volume E98.D Issue 2 Pages 252-261
In this paper, we propose fault-tolerant field-programmable gate array (FPGA) architectures and their design framework for intellectual property (IP) cores in system-on-chip (SoC). Unlike discrete FPGAs, in which the integration scale can be made relatively large, programmable IP cores must correspond to arrays of various sizes. The key features of our architectures are a regular tile structure, spare modules and bypass wires for fault avoidance, and a configuration mechanism for single-cycle reconfiguration. In addition, we utilize routing tools, namely EasyRouter for proposed architecture. This tool can handle various array sizes corresponding to developed programmable IP cores. In this evaluation, we compared the performances of conventional FPGAs and the proposed fault-tolerant FPGA architectures. On average, our architectures have less than 1.82 times the area and 1.11 times the delay compared with traditional island-style FPGAs. At the same time, our FPGA shows a higher fault tolerant performance.