Nothing Special   »   [go: up one dir, main page]

IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Classification of Utterances Based on Multiple BLEU Scores for Translation-Game-Type CALL Systems
Reiko KUWATsuneo KATOSeiichi YAMAMOTO
Author information
JOURNAL FREE ACCESS

2018 Volume E101.D Issue 3 Pages 750-757

Details
Abstract

This paper proposes a classification method of second-language-learner utterances for interactive computer-assisted language learning systems. This classification method uses three types of bilingual evaluation understudy (BLEU) scores as features for a classifier. The three BLEU scores are calculated in accordance with three subsets of a learner corpus divided according to the quality of utterances. For the purpose of overcoming the data-sparseness problem, this classification method uses the BLEU scores calculated using a mixture of word and part-of-speech (POS)-tag sequences converted from word sequences based on a POS-replacement rule according to which words are replaced with POS tags in n-grams. Experiments of classifying English utterances by Japanese demonstrated that the proposed classification method achieved classification accuracy of 78.2% which was 12.3 points higher than a baseline with one BLEU score.

Content from these authors
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top