2014 Volume E97.D Issue 9 Pages 2304-2311
An energy-efficient intra-chip communication link circuit with ternary current signaling is proposed for an asynchronous Network-on-Chip. The data signal encoded by an asynchronous three-state protocol is represented by a small-voltage-swing three-level intermediate signal, which results in the reduction of transition delay and achieving energy-efficient data transfer. The three-level voltage is generated by using a combination of dynamically controlled current sources with feedback loop mechanism. Moreover, the proposed circuit contains a power-saving scheme where the dynamically controlled transistors also are utilized. By cutting off the current paths when the data transfer on the communication link is inactive, the power dissipation can be greatly reduced. It is demonstrated that the average data-transfer speed is about 1.5 times faster than that of a binary CMOS implementation using a 130nm CMOS technology at the supply voltage of 1.2V.