Nothing Special   »   [go: up one dir, main page]

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Wideband Systems
Investigation on Frequency Diversity Effects of Various Transmission Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDMA
Lianjun DENGTeruo KAWAMURAHidekazu TAOKAMamoru SAWAHASHI
Author information
JOURNAL RESTRICTED ACCESS

2014 Volume E97.A Issue 1 Pages 30-39

Details
Abstract

This paper presents frequency diversity effects of localized transmission, clustered transmission, and intra-subframe frequency hopping (FH) using a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the evaluations, we employ the normalized frequency mean square covariance (NFMSV) as a measure of the frequency diversity effect, i.e., randomization level of the frequency domain interleaving associated with turbo coding. Link-level computer simulation results show that frequency diversity is very effective in decreasing the required average received signal-to-noise power ratio (SNR) at the target average block error rate (BLER) using a linear minimum mean-square error (LMMSE) based FDE according to the increase in the entire transmission bandwidth for DFT-precoded OFDMA. Moreover, we show that the NFMSV is an accurate measure of the frequency diversity effect for the 3 transmission schemes for DFT-precoded OFDMA. We also clarify the frequency diversity effects of the 3 transmission schemes from the viewpoint of the required average received SNR satisfying the target average BLER for the various key radio parameters for DFT-precoded OFDMA in frequency-selective Rayleigh fading channels.

Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top