Nothing Special   »   [go: up one dir, main page]

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Cryptography and Information Security
Adversarial Black-Box Attacks with Timing Side-Channel Leakage
Tsunato NAKAIDaisuke SUZUKIFumio OMATSUTakeshi FUJINO
Author information
JOURNAL RESTRICTED ACCESS

2021 Volume E104.A Issue 1 Pages 143-151

Details
Abstract

Artificial intelligence (AI), especially deep learning (DL), has been remarkable and applied to various industries. However, adversarial examples (AE), which add small perturbations to input data of deep neural networks (DNNs) for misclassification, are attracting attention. In this paper, we propose a novel black-box attack to craft AE using only processing time which is side-channel information of DNNs, without using training data, model architecture and parameters, substitute models or output probability. While, several existing black-box attacks use output probability, our attack exploits a relationship between the number of activated nodes and the processing time of DNNs. The perturbations for AE are decided by the differential processing time according to input data in our attack. We show experimental results in which our attack's AE increase the number of activated nodes and cause misclassification to one of the incorrect labels effectively. In addition, the experimental results highlight that our attack can evade gradient masking countermeasures which mask output probability to prevent crafting AE against several black-box attacks.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top