Nothing Special   »   [go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 5, 2022

Fourier analysis of a time-simultaneous two-grid algorithm using a damped Jacobi waveform relaxation smoother for the one-dimensional heat equation

  • Christoph Lohmann EMAIL logo , Jonas Dünnebacke and Stefan Turek

Abstract

In this work, the convergence behavior of a time-simultaneous two-grid algorithm for the one-dimensional heat equation is studied using Fourier arguments in space. The underlying linear system of equations is obtained by a finite element or finite difference approximation in space while the semi-discrete problem is discretized in time using the ϑ-scheme. The simultaneous treatment of all time instances leads to a global system of linear equations which provides the potential for a higher degree of parallelization of multigrid solvers due to the increased number of degrees of freedom per spatial unknown.

It is shown that the all-at-once system based on an equidistant discretization in space and time stays well conditioned even if the number of blocked time-steps grows arbitrarily. Furthermore, mesh-independent convergence rates of the considered two-grid algorithm are proved by adopting classical Fourier arguments in space without assuming periodic boundary conditions. The rate of convergence with respect to the Euclidean norm does not deteriorate arbitrarily if the number of blocked time steps increases and, hence, underlines the potential of the solution algorithm under investigation. Numerical studies demonstrate why minimizing the spectral norm of the iteration matrix may be practically more relevant than improving the asymptotic rate of convergence.

MSC 2010: 65M55; 65M06; 65M60

Acknowledgment

We thank the anonymous reviewers for their careful reading of our manuscript and many insightful comments. Special thanks go to the reviewer who suggested a much more elegant proof of Theorem 3.1 using the generating function of Toeplitz matrices.

References

[1] S. Börm and R. Hiptmair, Analysis of tensor product multigrid, Numer. Algorithms 26 (2001), 219–234.10.1023/A:1016686408271Search in Google Scholar

[2] A. Brandt, Multi-Level Adaptive Techniques (MLAT), 1; the Multi-Grid Method, IBM Thomas J. Watson Research Division, 1976.Search in Google Scholar

[3] V. A. Dobrev, Tz. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comp. 39 (2017), No. 5, S501–S527.10.1137/16M1074096Search in Google Scholar

[4] J. Dünnebacke, S. Turek, P. Zajac, and A. Sokolov, A time-simultaneous multigrid method for parabolic evolution equations, In: Numerical Mathematics and Advanced Applications ENUMATH 2019 (Eds. F. J. Vermolen and C. Vuik), Springer Int. Publishing, Cham, 2021, pp. 333–342.10.1007/978-3-030-55874-1_32Search in Google Scholar

[5] J. Dünnebacke, S. Turek, Ch. Lohmann, A. Sokolov, and P. Zajac, Increased space-parallelism via time-simultaneous Newton-multigrid methods for nonstationary nonlinear PDE problems, Int. J. High Perf. Comp. Appl. 35 (2021), No. 3, 211– 225.10.1177/10943420211001940Search in Google Scholar

[6] M. Emmett and M. Minion, Toward an eflcient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci. 7 (2012), No. 1, 105–132.10.2140/camcos.2012.7.105Search in Google Scholar

[7] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P.MacLachlan, J. B. Schroder, and S. Vandewalle, Multigrid methods with space– time concurrency, Comput. Visual. Sci. 18 (2017), 123–143.10.1007/s00791-017-0283-9Search in Google Scholar

[8] R. D. Falgout, T. A.Manteuffel, B. O’Neill, and J. B. Schroder, Multigrid reduction in time for nonlinear parabolic problems: A case study, SIAM J. Sci. Comp. 39 (2017), No. 5, S298–S322.10.1137/16M1082330Search in Google Scholar

[9] S. R. Franco, F. J. Gaspar, M. A. Villela Pinto, and C. Rodrigo, Multigrid method based on a space–time approach with standard coarsening for parabolic problems, Appl. Math. Comput. 317 (2018), 25–34.10.1016/j.amc.2017.08.043Search in Google Scholar

[10] S. Friedhoff, S.MacLachlan, and C. Börgers, Local Fourier analysis of space–time relaxation and multigrid schemes, SIAM J. Sci. Comput. 35 (2013), No. 5, S250–S276.10.1137/120881361Search in Google Scholar

[11] M. J. Gander, 50 years of time parallel time integration, In: Multiple Shooting and Time Domain Decomposition Methods (Eds. Th. Carraro, M. Geiger, S. Körkel, and R. Rannacher), Springer Int. Publishing, Cham, 2015, pp. 69–113.10.1007/978-3-319-23321-5_3Search in Google Scholar

[12] M. J. Gander and M. Neumüller, Analysis of a new space–time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput. 38 (2016), No. 4, A2173–A2208.10.1137/15M1046605Search in Google Scholar

[13] M. J. Gander and A. M. Stuart, Space–time continuous analysis of waveform relaxation for the heat equation, SIAM J. Sci. Comput. 19 (1998), No. 6, 2014–2031.10.1137/S1064827596305337Search in Google Scholar

[14] S. A. Gershgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sci. URSS 1931 (1931), No. 6, 749–754 (in German).Search in Google Scholar

[15] E. Giladi and H. B. Keller, Space–time domain decomposition for parabolic problems, Numerische Mathematik 93 (2002), 279–313.10.1007/s002110100345Search in Google Scholar

[16] W. Hackbusch, Parabolic multi-grid methods, In: Proc. of the Sixth Int. Symposium on Computing Methods in Applied Sciences and Engineering, VI, North-Holland Publishing Co., NLD, 1985, pp. 189–197.Search in Google Scholar

[17] W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, Vol. 4, Springer, Berlin–Heidelberg–New York, 2003.Search in Google Scholar

[18] A. Hessenthaler, B. S. Southworth, D. Nordsletten, O. Röhrle, R. D. Falgout, and J. B. Schroder, Multilevel convergence analysis of multigrid-reduction-in-time, SIAM J. Sci. Comput. 42 (2020), No. 2, A771–A796.10.1137/19M1238812Search in Google Scholar

[19] G. Horton and S. Vandewalle, A space–time multigrid method for parabolic partial differential equations, SIAM J. Sci. Comput. 16 (1995), No. 4, 848–864.10.1137/0916050Search in Google Scholar

[20] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput. 16 (1995), No. 3, 531–541.10.1137/0916034Search in Google Scholar

[21] J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite element meshes: The discrete-time case, SIAM J. Sci. Comput. 17 (1996), No. 1, 133–155.10.1137/0917011Search in Google Scholar

[22] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 1 (1982), No. 3, 131–145.10.1109/TCAD.1982.1270004Search in Google Scholar

[23] J.-L. Lions, Y.Maday, and G. Turinici, Résolution d’EDP par un schéma en temps ‘pararéel’, Comptes Rendus de l’Académie des Sciences, Series I, Mathematics 332 (2001), No. 7, 661–668.10.1016/S0764-4442(00)01793-6Search in Google Scholar

[24] Ch. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT Numer. Math. 27 (1987), 216–234.10.1007/BF01934186Search in Google Scholar

[25] M. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math. Comput. Sci. 5 (2010), No. 2, 265–301.10.2140/camcos.2010.5.265Search in Google Scholar

[26] Y. Notay, Rigorous convergence proof of space–time multigrid with coarsening in space, Numer. Algorithms 89 (2022), No. 2, 675–699.10.1007/s11075-021-01129-2Search in Google Scholar

[27] B.W. Ong and J. B. Schroder, Applications of time parallelization, Comput. Visual. Sci. 23 (2020), No. 1, 1–15.10.1007/s00791-020-00331-4Search in Google Scholar

[28] C.W. Oosterlee and P. Wesseling, Multigrid schemes for time-dependent incompressible Navier–Stokes equations, IMPACT of Computing in Science and Engineering 5 (1993), No. 3, 153–175.10.1006/icse.1993.1007Search in Google Scholar

[29] A. Reusken, Convergence analysis of a multigrid method for convection–diffusion equations, Numerische Mathematik 91 (2002), No. 2, 323–349.10.1007/s002110100312Search in Google Scholar

[30] B. S. Southworth, Necessary conditions and tight two-level convergence bounds for parareal and multigrid reduction in time, SIAM J. Matrix Anal. Appl. 40 (2019), No. 2, 564–608.10.1137/18M1226208Search in Google Scholar

[31] S. Ta’asan and H. Zhang, On the multigrid waveform relaxation method, SIAM J. Sci. Comput. 16 (1995), No. 5, 1092–1104.10.1137/0916063Search in Google Scholar

[32] P. Tarazaga, Eigenvalue estimates for symmetric matrices, Linear Algebra Appl. 135 (1990), 171–179.10.1016/0024-3795(90)90120-2Search in Google Scholar

[33] P. Tilli, Singular values and eigenvalues of non-Hermitian block Toeplitz matrices, Linear Algebra Appl. 272 (1998), No. 1, 59–89.10.1016/S0024-3795(97)00308-XSearch in Google Scholar

[34] S. Vandewalle and G. Horton, Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods, Computing 54 (1995), 317–330.10.1007/BF02238230Search in Google Scholar

[35] S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems, BG Teubner, Stuttgart, 1993.10.1007/978-3-322-94761-1Search in Google Scholar

[36] S. Vandewalle and R. Piessens, Numerical experiments with nonlinear multigrid waveform relaxation on a parallel processor, Appl. Numer. Math. 8 (1991), No. 2, 149–161.10.1016/0168-9274(91)90048-5Search in Google Scholar

[37] S. G. Vandewalle and E. F. Van de Velde, Space–time concurrent multigrid waveform relaxation, Ann. Numer. Math. 1 (1994), No. 1-4, 347–360.Search in Google Scholar

A Appendix

To prove the statement of Theorem 3.1, we first note a simplification of [33, Th. 4.1] which can be easily verified by considering block Toeplitz matrices for the special case of scalar block entries.

Theorem A.1

Let A ∈ ℝM×M, M ∈ ℕ, be a Toeplitz matrix generated by some function fL((−π, π), ℂ), that is,

(A.1) akl=12πππf(x)ei(k+l)xdx,k,l=1,,M

Then the spectral norm of A is bounded from above by

(A.2) A 2 sup x Q | f ( x ) | .

Based on this result, Theorem 3.1 can be shown by some algebraic manipulations.

Proof of Theorem 3.1. First of all, let us consider the special case f2 = 0. Then the matrix F−1E coincides with f 1 1 E, which is well defined because f1 does not vanish by assumption of the theorem. Therefore, we have

(F1E)F1E=f12(e12+e22e1e2e1e2e12+e22e1e2e1e2e12).

Obviously, this matrix is positive semidefinite while the 12maximal eigenvalue is bounded from above by e+ e+2|e1e2| according to the Gershgorin circle theorem 22[14]. Then the statement of the theorem directly follows by distinguishing between e1e2 ⩾ 0 and e1e2 < 0.

If f2 ≠ 0, we first note that the inverse of F reads

F1=(f11(f11f2)f11f11(f11f2)M1f11(f11f2)f11f11)

and, hence,

F 1 E = f 1 1 f 1 1 f 2 f 1 1 f 1 1 f 1 1 f 2 M 1 f 1 1 f 1 1 f 2 f 1 1 f 1 1 e 1 e 2 e 1 e 2 e 1 = f 1 1 e 1 f 1 1 ( e 2 f 2 f 1 1 e 1 ) f 1 1 e 1 f 1 1 f 2 M 2 ( e 2 f 2 f 1 1 e 1 ) f 1 1 ( e 2 f 2 f 1 1 e 1 f 1 1 e 1 = s 1 s 2 s 1 s 2 M 2 s 3 s 3 s 1

where s1=f11e1,s2=f11f2(1,1),s3=f11(e2f2f11e1). Therefore, the matrix F−1E is a Toeplitz matrix and generated by

f ( x ) := s 1 + s 3 l = 1 s 2 l 1 e i l x = s 1 + s 3 e i x l = 0 s 2 e i x l = s 1 + s 3 e i x 1 s 2 e i x 1 = s 1 + s 3 e i x s 2 1 .

Function f reaches its absolute extremum at x = 0 or x = π due to the fact that s1, s2, and s3 are real values.

Thus, the spectral norm of F−1E is bounded from above by

F1E 2max(|f(0)|,|f(π)|)=max(| e1e2 || f1f2 |,| e1+e2 || f1+f2 |)

which can be easily verified by

|f(0)|=| s1+s3(1s2)1 |=| e1f1+e2f2f11e1f1(1+f11f2) |=| e1f1+e2f1f2e1f1(f1+f2) |=| e1+e2f1+f2 ||f(π)|=| s1s3(1+s2)1 |=| e1f1e2f2f11e1f1(1f11f2) |=| e1f1e2f1f2e1f1(f1f2) |=| e1e2f1f2 |.

This completes the proof of Theorem 3.1.

Proof of Theorem 5.3. First of all, we note that

2mii(12ϑ)δtdii(2+ζ)mii2(12ϑ)δtdii23=6mii3(12ϑ)δtdii(4+2ζ)mii+4(12ϑ)δtdii3((2+ζ)mii2(12ϑ)δtdii)=2(1ζ)mii+(12ϑ)δtdii3((2+ζ)mii2(12ϑ)δtdii).

Therefore, the value of ω0 is equal to 2/3 if and only if

(A.3) 2(1ζ)mii+(12ϑ)δtdii0

and, particularly, ϑ ⩾ 1/2 is mandatory. If condition (A.3) is satisfied and d(ℓ) > dii, the first argument of the maximum in (5.5b) is bounded from above by 1/3 because

ω 0 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m i i ( 1 2 ϑ ) δ t d i i 1 1 3 = 2 3 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m i i ( 1 2 ϑ ) δ t d i i 1 1 3 = 2 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 4 2 m i i ( 1 2 ϑ ) δ t d i i 3 2 m i i ( 1 2 ϑ ) δ t d i i = 4 m ( ) 2 m i i 0  by  ( 2.8 ) + 2 ( 1 2 ϑ ) 0 δ t 2 d i i d ( ) 0  by  ( 2.7 ) 3 2 m i i ( 1 2 ϑ ) δ t d i i 0 1 ω 0 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m i i ( 1 2 ϑ ) δ t d i i 1 3 = 1 2 3 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m i i ( 1 2 ϑ ) δ t d i i 1 3 = 2 2 m i i ( 1 2 ϑ ) δ t d i i 2 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 3 2 m i i ( 1 2 ϑ ) δ t d i i = 4 m i i m ( ) 2 ( 1 2 ϑ ) δ t d i i d ( ) 3 2 m i i ( 1 2 ϑ ) δ t d i i

which is nonpositive for finite differences due to the fact that mii = m(ℓ) = 1, ϑ ⩾ 1/2, and d(ℓ) > dii while we have

4(miim(l))2(12ϑ)δt(diid(l))=2(2sl21)mii2(12ϑ)δt(diid(l))=2dii1(d(l)dii0(mii+(12ϑ)δtdii)0 by (A.3) 0

in the context of linear finite elements. On the other hand, the second argument is not greater than 1/3 due to the fact that

| 123dii1d(l) |=123dii1d(l)123=13 if d(l)32dii| 123dii1d(l) |=23dii1d(l)1431=13 if d(l)32dii

by virtue of (2.7). Let us now assume that

(A.4) 2(1ζ)mii+(12ϑ)δtdii>0.

Then the relaxation parameter ω0 attains the second argument of the maximum in (5.9) and, hence, the first expression in the definition of B(ℓ) is bounded from above by

(2ζ)mii(2+ζ)mii2(12ϑ)δtdii.

Indeed, we have

1ω02m(l)(12ϑ)δtd(l)2mii(12ϑ)δtdii=(2+ζ)mii2(12ϑ)δtdii(2m(l)(12ϑ)δtd(l))(2+ζ)mii2(12ϑ)δtdii=(2ζ)mii+2ζmii2m(l)+4(1sl2)(1ζ)mii=0!(2+ζ)mii2(12ϑ)δtdii2(1sl2)0>0 by (A.4) (2(1ζ)mii+(12ϑ)δtdii)(2+ζ)mii2(12ϑ)δtdii(2ζ)mii(2+ζ)mii2(12ϑ)δtdii

because

2ζmii2m(l)+4(1sl2)(1ζ)mii={ 22=0,ζ=1mii(13+2sl2+2(1sl2))=0,ζ=12

and, on the other hand,

ω02m(l)(12ϑ)δtd(l)2mii(12ϑ)δtdii1=(2+ζ)mii+2(12ϑ)δtdii+(2m(l)(12ϑ)δtd(l))(2+ζ)mii2(12ϑ)δtdii=(2ζ)mii4mii+2(12ϑ)δtdii+(2m(l)(12ϑ)δtd(l))(2+ζ)mii2(12ϑ)δtdii(2ζ)mii(2+ζ)mii2(12ϑ)δtdii

due to the fact that

4mii2(12ϑ)δtdii(2m(l)(12ϑ)δtd(l))={ 2(ζmii(12ϑ)δtdii)0 by (2.10)+2((2ζ)miim(l))0 by (2.8)+(12ϑ)δtd(l)00,ϑ122(2miim(l))0 by (2.8)(12ϑ)0δt(2diid(l))0 by (2.7) 0,ϑ>12.

Finally, the second argument of the maximum in (5.5b) satisfies

1 ω 0 d ( ) d i i = 1 2 m i i d ( ) ( 1 2 ϑ ) δ t d i i d ( ) d i i ( 2 + ζ ) m i i 2 ( 1 2 ϑ ) δ t d i i = ( 2 + ζ ) m i i d i i 2 ( 1 2 ϑ ) δ t d i i 2 2 m i i d ( ) + ( 1 2 ϑ ) δ t d i i d ( ) d i i ( 2 + ζ ) m i i 2 ( 1 2 ϑ ) δ t d i i = ( 2 ζ ) m i i d i i + 2 ( 1 ζ ) m i i + ( 1 2 ϑ ) δ t d i i 0  by (A.4)  d ( ) 2 d i i 0 + ( 4 2 ζ ) 0 m i i d i i d ( ) 0 d i i ( 2 + ζ ) m i i 2 ( 1 2 ϑ ) δ t d i i ( 2 ζ ) m i i ( 2 + ζ ) m i i 2 ( 1 2 ϑ ) δ t d i i
ω0d(l)dii1=2miid(l)(12ϑ)δtdiid(l)(2+ζ)miidii+2(12ϑ)δtdii2dii((2+ζ)mii2(12ϑ)δtdii)=(2ζ)miidii+(d(l)2dii)0 by (2.7)0 by (2.10) (2mii(12ϑ)δtdii)dii((2+ζ)mii2(12ϑ)δtdii)(2ζ)mii(2+ζ)mii2(12ϑ)δtdii

which proves the validity of inequality (5.10).

To prove identity (5.11), we have to show the validity of

| 1ω2m(l)(12ϑ)δtd(l)2mii(12ϑ)δtdii |1ωdii1d(l)

whenever d(ℓ)dii and ω ∈ (0, 1]. For this purpose, we first note that

(1ωdii1d(l))(1ω2m(l)(12ϑ)δtd(l)2mii(12ϑ)δtdii)=ω(2m(l)(12ϑ)δtd(l)2mii(12ϑ)δtdiidii1d(l))=ω2diim(l)(12ϑ)δtdiid(l)2miid(l)+(12ϑ)δtdiid(l)dii(2mii(12ϑ)δtdii)=ω2(diim(l)miid(l))dii(2mii(12ϑ)δtdii)0

due to the fact that

m(l)diimiid(l)=diid(l)0ifζ=1m(l)diimiid(l)=mii(32sl2)diimii2diisl2=32miidii(12sl2)=32mii(diid(l))0ifζ=12,

On the other hand, we have

1 ω d i i 1 d ( ) ω 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m i i ( 1 2 ϑ ) δ t d i i 1 = 2 ω 2 m i i d ( ) ( 1 2 ϑ ) δ t d i i d ( ) + 2 d i i m ( ) ( 1 2 ϑ ) δ t d i i d ( ) d i i 2 m i i ( 1 2 ϑ ) δ t d i i = 2 2 m i i d i i ( 1 2 ϑ ) δ t d i i 2 ω m i i d ( ) + d i i m ( ) + ω ( 1 2 ϑ ) δ t d i i d ( ) d i i 2 m i i ( 1 2 ϑ ) δ t d i i = 2 ( 2 ζ ) m i i d i i ω ( 1 ζ ) m i i d ( ) + d i i m ( ) d i i 2 m i i ( 1 2 ϑ ) δ t d i i + ζ m i i ( 1 2 ϑ ) δ t d i i 0  by  ( 2.10 ) d i i ω d ( ) d i i d ( ) 0 d i i 2 m i i ( 1 2 ϑ ) δ t d i i

which is nonnegative either for ζ = mii = m(ℓ) = 1 in case of finite differences or according to

(2ζ)miidiiω((1ζ)miid(l)+diim(l))=miidii(32ω(sl2+32sl2))=32miidii(1ω)0

for linear finite elements and ζ = 1/2.

Although the statement of Theorem 6.1 is true for finite element and finite difference discretizations, we prove the result by considering both spatial discretization techniques individually.

Proof of Theorem 6.1 for finite differences. To prove that spr(J(Cor,ℓ)(J(Jac,ℓ))ν) is smaller than 1 for all ℓ = 1, . . . , ̄N, we directly estimate the eigenvalues λ± ∈ ℂ of J(Cor,ℓ)(J(Jac,ℓ))ν which are the roots of the characteristic polynomial p : ℂ → ℂ

p ( λ ) = det J ( Cor , ) J ( Jac , ) v λ I = a ¯ ( ) 2 det a ¯ ( ) c 4 a ( ) j ( Jac , ) v a ¯ ( ) λ s 2 c 2 a ( N + 1 ) j ( Jac , N + 1 ) v s 2 c 2 a ( ) j ( Jac , ) v a ¯ ( ) s 4 a ( N + 1 ) j ( Jac , N + 1 ) v a ¯ ( ) λ = a ¯ ( ) 2 a ¯ ( ) c 4 a ( ) j ( Jac , ) v a ¯ ( ) λ a ¯ ( ) s 4 a ( N + 1 ) j ( Jac , N + 1 ) v a ¯ ( ) λ s 4 c 4 a ( ) a ( N + 1 ) j ( Jac , ) v j ( Jac , N + 1 ) v = a ¯ ( ) 2 a ¯ ( ) λ 2 a ¯ ( ) λ a ¯ ( ) c 4 a ( ) j ( Jac , ) v + a ¯ ( ) s 4 a ( N + 1 ) j ( Jac , N + 1 ) v + a ¯ ( ) 2 a ¯ ( ) c 4 a ( ) + s 4 a ( N + 1 ) j ( Jac , ) v j ( Jac , N + 1 ) v = a ¯ ( ) 2 a ¯ ( ) λ 2 a ¯ ( ) λ s 2 a ¯ ( ) + c 2 j ( Jac , ) v + c 2 a ¯ ( ) + s 2 j ( Jac , N + 1 ) v + 2 s 2 c 2 a ¯ ( ) j ( Jac , ) v j ( Jac , N + 1 ) v .

Here, the last identity is valid because

(A.5a) a¯(l)cl4a(l)=1+2ϑδtdiisl2cl2cl42ϑδtdiisl2cl4=sl2+cl2cl4+2ϑδtsl4cl2=sl2(a¯(l)+cl2)
(A.5b) a¯(l)sl4a(N+1l)=1+2ϑδtdiisl2cl2sl42ϑδtdiisl4cl2=sl2+cl2sl4+2ϑδtsl2cl4=cl2(a¯(l)+sl2).

Therefore, the eigenvalues λ± satisfy

(A.6) (a¯(l)λ±12(sl2(a¯(l)+cl2)(j(Jac,l))v+cl2(a¯(l)+sl2)(j(Jac,N+1l))v))2=14(sl2(a¯(l)+cl2)(j(Jac,l))v+cl2(a¯(l)+sl2)(j(Jac,N+1l))v)22sl2cl2a¯(l)(j(Jac,l))v(j(Jac,N+1l))v.

Let us now consider the special case (j(Jac,ℓ))ν(j(Jac,N+1−ℓ))ν ⩽ 0. Then the right hand side of (A.6) is obviously nonnegative and can be estimated by

(A.7) 0 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v j ( J a c , N + 1 ) v = 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v 2 + 1 4 c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 + s 2 c 2 j ( J a c , ) v j ( J a c , N + 1 ) v 0 1 2 a ¯ ( ) + c 2 a ¯ ( ) + s 2 2 a ¯ ( ) > 1 2 a ¯ ( ) + c 2 a ¯ ( ) + s 2 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2

because

(A.8) (a¯(l)+cl2)(a¯(l)+sl2)2a¯(l)=(a¯(l))2a¯(l)+sl2cl2=a¯(l) (¯(l)1 )=ϑδta¯(l)+sl2cl2>0.

Thus, both eigenvalues are real and satisfy

a ¯ ( ) λ ± 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v + 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v = 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v + 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v = max s 2 a ¯ ( ) + c 2 j ( J a c , ) v , c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v a ¯ ( ) max j ( J a c , ) v , j ( J a c , N + 1 ) v < a ¯ ( )

due to the reverse triangle inequality, Theorem 5.1, (A.5) and the fact that (j(Jac,ℓ))ν(j(Jac,N+1−ℓ))ν ⩽ 0.

On the other hand, for (j(Jac,ℓ))ν(j(Jac,N+1−ℓ))ν > 0, we can assume that

jmax:=max((j(Jac,l))v,(j(Jac,N+1l))v)>0.

Otherwise, consider −(J(Jac,ℓ))ν instead of (J(Jac,ℓ))ν. Then estimate (A.8) can be exploited as in (A.7) to prove

(A.9) 14(sl2(a¯(l)+cl2)(j(Jac,l))v+cl2(a¯(l)+sl2)(j(Jac,N+1l))v)22sl2cl2a¯(l)(j(Jac,l))v(j(Jac,N+1l))v>14(sl2(a¯(l)+cl2)(j(Jac,l))vcl2(a¯(l)+sl2)(j(Jac,N+1l))v)20

and, hence, both eigenvalues are real and positive because

a¯(l)λ±>12(sl2(a¯(l)+cl2)(j(Jac,l))v+cl2(a¯(l)+sl2)(j(Jac,N+1l))v)12| sl2(a¯(l)+cl2)(j(Jac,l))vcl2(a¯(l)+sl2)(j(Jac,N+1l))v |=min(sl2(a¯(l)+cl2)(j(Jac,l))v,cl2(a¯(l)+sl2)(j(Jac,N+1l))v)0

by (A.6) and (A.9). Furthermore, the maximal eigenvalue λ+ satisfies

a ¯ ( ) λ + = 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v + 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v j ( J a c , N + 1 ) ) v 1 2 s 2 a ¯ ( ) + c 2 j max + c 2 a ¯ ( ) + s 2 j max + 1 4 s 2 a ¯ ( ) + c 2 j max + c 2 a ¯ ( ) + s 2 j max 2 2 s 2 c 2 a ¯ ( ) j max 2 = 1 2 a ¯ ( ) + 2 s 2 c 2 j max + 1 4 a ¯ ( ) + 2 s 2 c 2 2 2 s 2 c 2 a ¯ ( ) j max = 1 2 a ¯ ( ) + 2 s 2 c 2 j max + 1 2 a ¯ ( ) 2 s 2 c 2 j max = max a ¯ ( ) , 2 s 2 c 2 j max < a ¯ ( )

by Theorem 5.1 and due to the fact that 2sl2cl21/21a¯(l) because λ+ grows monotonically with 22respect to (j(Jac ,l))vand(j(Jac,N+1l))v. Indeed, for instance, we have

a ¯ ( ) λ + j ( Jac , N + 1 ) v = 1 2 c 2 a ¯ ( ) + s 2 + 1 2 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v c 2 a ¯ ( ) + s 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v j ( J a c , N + 1 ) v 1 4 c 2 a ¯ ( ) + s 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v j ( J a c , N + 1 ) v + 1 2 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v c 2 a ¯ ( ) + s 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v 1 4 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v j ( J a c , N + 1 ) v

by (A.9), which is nonnegative because

1 2 c 2 a ¯ ( ) + s 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v + 1 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v + c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v c 2 a ¯ ( ) + s 2 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v = c 2 a ¯ ( ) + s 2 max s 2 a ¯ ( ) + c 2 j ( J a c , ) v , c 2 a ¯ ( ) + s 2 j ( J a c , N + 1 ) v 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v c 2 a ¯ ( ) + s 2 s 2 a ¯ ( ) + c 2 j ( J a c , ) v 2 s 2 c 2 a ¯ ( ) j ( J a c , ) v = s 2 c 2 j ( J a c , ) v a ¯ ( ) + s 2 a ¯ ( ) + c 2 2 a ¯ ( ) 0

according to (A.8). This proves the statement of Theorem 6.1 for finite differences by exploiting (6.11).

Proof of Theorem 6.1 for finite elements. For finite elements, we first note that J(Cor,ℓ) is singular because

a ¯ ( ) 2 det J ( Cor,  ) = a ¯ ( ) 2 det 1 ζ 1 c 4 a ¯ ( ) 1 a ( ) ζ 1 s 2 c 2 a ¯ ( ) 1 a ( N + 1 ) ζ 1 s 2 c 2 a ¯ ( ) 1 a ( ) 1 ζ 1 s 4 a ¯ ( ) 1 a ( N + 1 ) = a ¯ ( ) 2 c 4 a ( ) a ¯ ( ) 2 s 4 a ( N + 1 ) 4 s 4 c 4 a ( ) a ( N + 1 ) = a ¯ ( ) a ¯ ( ) 2 s 4 a ( N + 1 ) 2 c 4 a ( ) = 0

according to

(A.11) 2sl4a(N+1l)+2cl4a(l)=mii(3sl42sl4cl2+3cl42sl2cl4)+9δtdii(4sl4cl2+4sl2cl4)=mii(38sl2cl2)+ϑδtdii(4sl2cl2)=m¯(l)+ϑδtd¯(l)=a¯(l).

Therefore, the matrix J(Cor,ℓ)(J(Jac,ℓ))ν1+ν2 has a vanishing eigenvalue, too, and its spectral radius coincides with the absolute value of the trace, that is,

(A.12) spr J ( C o r , ) J J a c , ) v = tr J C O r , ) J J a c , ) v = 1 2 c 4 a ¯ ( ) 1 a ( ) j ( J a c , ) v + 1 2 s 4 a ¯ ( ) 1 a ( N + 1 ) j ( J a c , N + 1 ) v = 2 a ¯ ( ) 1 s 4 a ( N + 1 ) j ( J a c , ) v + c 4 a ( ) j ( J a c , N + 1 ) v 2 a ¯ ( ) 1 s 4 a ( N + 1 ) j ( J a c , ) v + c 4 a ( ) j ( J a c , N + 1 ) v < 2 a ¯ ( ) 1 s 4 a ( N + 1 ) + c 4 a ( ) = 1

by virtue of (5.3) and (A.11). This proves the statement of Theorem 6.1 for finite elements by exploiting (6.11).

Proof of Lemma 6.1. To prove the inequalities, we first note that

(A.13) 2m¯(l)(12ϑ)δtd¯(l)32mii>0,l=1,,N¯

because

(A.14) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = m i i 6 16 s 2 c 2 2 s 2 c 2 + 2 s 2 c 2 m i i 2 ( 1 2 ϑ ) δ t d i i 0  by  ( 2.10 ) 6 m i i 1 3 s 2 c 2 6 m i i 1 3 4 3 2 m i i  if  ζ = 1 2
(A.15) 2m¯(l)(12ϑ)δtd¯(l)=2(1sl2cl2)+2sl2cl2(1(12ϑ)δtdii)0 by (2.10)2(1sl2cl2)2(114)32ifζ=1

due to the fact that sl2cl2(0,1/4]. We now find upper bounds 22for the spectral norm of the submatrices by using Theorem 3.1, where different values for e1 and e2 are considered while

f1=m¯(l)+ϑδtd¯(l),f2=m¯(l)+(1ϑ)δtd¯(l).

Indeed, the requirement |f2|< |f1| made in this theorem is valid because

f 2 2 f 1 2 = δ t d ¯ ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) > 0  by (A .13)  < 0

which can be shown as in (5.8).

– Then, according to Theorem 43.1, the spectral norm of IK ζ1cl4(S¯K(l))1SK(l) is bounded from above by

I K ζ 1 c 4 S ¯ K ( ) 1   S K ( ) 2 max 1 ζ 1 c 4 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) , d ¯ ( ) ζ 1 c 4 d ( ) d ¯ ( ) .

using the quantities

e1=(m¯(l)+ϑδtd¯(l))ζ1cl4(m(l)+ϑδtd(l))e2=(m¯(l)+(1ϑ)δtd¯(l))ζ1cl4(m(l)+(1ϑ)δtd(l)).

This bound can be simplified by exploiting the identities

d¯(l)ζ1cl4d(l)d¯(l)=d¯(l)cl2d¯(l)d¯(l)=1cl2=sl2

due to (6.5) and

(A.16) 1 ζ 1 c 4 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 1 c 4 + ζ 1 c 4 2 ζ m ¯ ( ) m ( ) ( 1 2 ϑ ) δ t ζ d ¯ ( ) d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 1 c 4 + ζ 1 c 4 2 ζ m ¯ ( ) m ( ) + 2 ( 1 2 ϑ ) δ t s 4 d i i 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( )

where the numerator of the last fraction is nonpositive if ϑ ⩾ 1/2 by (6.4) or due to the fact that

(A.17) 2ζm¯(l)2m(l)+2ζsl4mii2sl4(ζmii(12ϑ)δtdii)0 by (2.10)mii(38sl2cl23+2sl2+sl4)=3miiso2(3so22)0

for finite elements because sl21/2foralll=1,,N¯. For ζ = 1 (and ϑ < 1/2), we observe

1ζ1cl42m(l)(12ϑ)δtd(l)2m¯(l)(12ϑ)δtd¯(l)=1cl4+cl42sl42sl4(1(12ϑ)δtdii)22sl2cl2+2sl2cl2(1(12ϑ)δtdii)1cl4+cl42sl42(1sl2cl2)=1cl41sl2(cl2+sl2)1sl2cl2=1cl61sl2cl21cl6.

On the other hand, we have

1 ζ 1 c 4 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 1 c 2 2 c 2 ( 1 2 ϑ ) δ t c 2 d ( ) 2 ( 1 2 ϑ ) δ t d ¯ ( ) 1 c 2 2 ( 1 2 ϑ ) δ t d ¯ ( ) 2 ( 1 2 ϑ ) δ t d ¯ ( ) = 1 c 2 0  if  ζ = 1 1 ζ 1 c 4 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) 4 c 4 m ( ) + 2 c 4 ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 2 m ¯ ( ) 2 c 4 m ( ) ( 1 2 ϑ ) δ t d i i 4 s 2 c 2 4 c 4 s 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 2 m ¯ ( ) 2 c 4 m ( ) s 4 c 2 m i i + 2 s 4 c 2 0  by (2.10)  m i i 2 ( 1 2 ϑ ) δ t d i i 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) 2 m i i 3 8 s 2 c 2 3 c 4 + 2 s 2 c 4 s 4 c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 6 m i i s 6 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) 0  if  ζ = 1 2

according to (A.13).

– To estimate the spectral norm of IKζ1sl4(S¯K(l))1SK(N+1l), we can proceed similarly by replacing m(ℓ) and d(ℓ) by m(N+1−ℓ) and d(N+1−ℓ), respectively, while 22shas to be substituted by cand vice versa. However, the numerator occurring in (A.16) does not have to be nonpositive for ζ = 1/2 and ϑ ⩾ 1/2 while the last inequality of (A.17) is not valid any more either. However, using the same ideas, we derive

(A.18) 1ζ1sl42m(N+1l)(12ϑ)δtd(N+1l)2m¯(l)(12ϑ)δtd¯(l)1sl4+sl46miicl2(3cl22)2m¯(l)(12ϑ)δtd¯(l)
(A.19) 1sl4+sl46miicl2(3cl22)6mii(13sl2cl2)=1sl413cl2(sl2+cl2)+2cl213sl2cl21sl6

for ζ=1/2,ϑ[0,1], and cl22/3,  because estimate (A.18) can be shown as in (A.16) and (A.17) while the first inequality 2in (A.19) is valid due to (A.14). For ζ=1/2,ϑ[0,1], and cl2<2/3, the same inequality can be easily verified because

1ζ1sl42m(N+1l)(12ϑ)δtd(N+1l)2m¯(l)(12ϑ)δtd¯(l)1sl4+sl46miicl2(3cl22)2m¯(l)(12ϑ)δtd¯(l)1sl41sl6.

– Invoking Theorem 3.1 using e1 = m(ℓ) + ϑδtd(ℓ) and e2 = −m(ℓ) + (1 − ϑ)δtd(ℓ), an upper bound of ζ1sl2cl2(S¯K(l))1SK(l) 2 is given by

(A.20) ζ1sl2cl2(S¯K(l))1SK(l) 2ζ1sl2cl2max(| 2m(l)(12ϑ)δtd(l)2m¯(l)(12ϑ)δtd¯(l) |,| d(l)d¯(l) |)

where

ζ1sl2cl2d(l)d¯(l)=ζ1sl2cl22sl2dii2ζ1sl2cl2dii=sl2.

Furthermore, it is not necessary to take the absolute value of the first argument in the definition of the maximum in (A.20) because

ζ 1 s 2 c 2 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) 0

by (2.13) and (A.13). On the other hand, the expression is bounded from above by se2 for a finite difference approximation, that is, ζ = 1, because

ζ 1 s 2 c 2 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) s 2 = s 2 2 c 2 ( 1 2 ϑ ) δ t c 2 d ( ) 2 + ( 1 2 ϑ ) δ t d ¯ ( ) 2 ( 1 2 ϑ ) δ t d ¯ ( ) = s 2 2 s 2 2 ( 1 2 ϑ ) δ t d ¯ ( ) 0

while, in case of finite elements, an upper bound is given by 43Sl2 due to

ζ 1 s 2 c 2 2 m ( ) ( 1 2 ϑ ) δ t d ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) s 2 c 4 1 3 s 2 c 2 = 4 1 3 s 2 c 2 s 2 c 2 m ( ) 2 s 2 c 4 m ¯ ( ) ( 1 2 ϑ ) δ t 2 1 3 s 2 c 2 s 2 c 2 d ( ) s 2 c 4 d ¯ ( ) 1 3 s 2 c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = s 2 c 2 m i i 6 4 s 2 18 s 2 c 2 + 12 s 4 c 2 6 c 2 + 16 s 2 c 4 2 m i i s 2 3 s 4 c 2 s 2 c 4 1 3 s 2 c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) + s 2 c 2 s 2 1 3 s 2 c 2 c 4 0  by  ( A .21 ) s 2 3 s 4 c 2 s 2 c 4 0  by  ( 2.10 ) 2 m i i 4 ( 1 2 ϑ ) δ t d i i 1 3 s 2 c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) s 2 c 2 m i i 6 18 s 2 c 2 6 s 2 + c 2 + 18 s 4 c 2 + 18 s 2 c 4 1 3 s 2 c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = 0

by virtue of the fact that

(A.21) c 4 1 3 s 2 c 2 = 3 1 s 2 2 3 1 3 s 2 c 2 = 3 6 s 2 + 3 s 4 3 1 3 s 2 c 2 = 4 12 s 2 1 s 2 = c 2 1 3 s 2 2 0 3 1 3 s 2 c 2 4 1 3 s 2 c 2 3 1 3 s 2 c 2 = 4 3 c 4 1 3 s 2 c 2 = 1 + c 4 1 + 3 s 2 c 2 1 3 s 2 c 2 = 1 + 1 + c 2 c 2 + 3 s 2 1 3 s 2 c 2 = 1 + 1 + 1 s 2 1 + 2 s 2 1 3 s 2 c 2 = 1 + s 2 1 2 s 2 0 1 3 s 2 c 2 1

because s⩽ 1/2 for all ℓ = 1, . . . , ̄N.

– Finally, inequality (6.18) can be derived similarly by invoking

ζ 1 s 2 c 2 d ( N + 1 ) d ¯ ( ) = ζ 1 s 2 c 2 2 c 2 d i i 2 ζ 1 s 2 c 2 d i i = c 2 0 ζ 1 s 2 c 2 2 m ( N + 1 ) ( 1 2 ϑ ) δ t d ( N + 1 ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) = c 2 2 ζ 1 s 2 m ( N + 1 ) ( 1 2 ϑ ) δ t d ¯ ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) c 2 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) 2 m ¯ ( ) ( 1 2 ϑ ) δ t d ¯ ( ) c 2

because sl21/2<1forζ=1and

ζ 1 s 2 m ( N + 1 ) m ¯ ( ) = m i i 3 s 2 2 s 2 c 2 3 + 8 s 2 c 2 = m i i 6 s 2 c 2 3 c 2 = 3 c 2 m i i 2 s 2 1 0

in case of a finite element approximation.

Received: 2021-04-08
Revised: 2022-05-18
Accepted: 2022-05-20
Published Online: 2022-06-05
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.11.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2021-0045/html
Scroll to top button