Abstract
A dual band-notched MIMO/Diversity antenna is proposed in this paper. The proposed antenna ensures notches in WiMAX band (3.3–3.6 GHz) besides WLAN band (5–6 GHz). Mushroom Electromagnetic Band Gap (EBG) arrangements are employed for discarding interfering frequencies. The procedure followed to attain notches is antenna shape independent with established formulas. The electromagnetic coupling among two narrowly set apart Ultra-Wide Band (UWB) monopoles is reduced by means of decoupling bands and slotted ground plane. Monopoles are 90° angularly parted with steps on the radiator. This aids to diminish mutual coupling and also adds in the direction of impedance matching by long current route. S21 or else mutual coupling of fewer than 15 dB is established over antenna operating range. Two-port envelope correlation coefficient is lower than 0.02 in UWB range of 3.1 GHz–10.6 GHz. The shifting in notch frequencies by varying variables in formulas is also reported. The suggested antenna is designed on low budget FR-4 substrate with measurements as (
References
[1] Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA, 2002.Search in Google Scholar
[2] M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communication,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2810–2824, Nov. 2004.10.1109/TAP.2004.835272Search in Google Scholar
[3] M. M. Honari, A. Abdipour, and G. Moradi, “Bandwidth and gain enhancement of an aperture antenna with modified ring patch,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1413–1416, 2011.10.1109/LAWP.2011.2178998Search in Google Scholar
[4] Y. K. Choukiker, S. K. Sharma, and S. K. Behera, “Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices,” IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1483–1488, Mar. 2014.10.1109/TAP.2013.2295213Search in Google Scholar
[5] Y. Song, T. N. Guo, R. C. Qiu, and M. C. Wicks, “A real time UWB MIMO system with programmable transmit waveforms: Architecture, algorithms and demonstrations,” IEEE Trans. Antennas Propag., vol. 60, no. 8, pp. 3933–3940, Aug. 2012.10.1109/TAP.2012.2201107Search in Google Scholar
[6] Y. Song, N. Guo, and R. C. Qiu, “Implementation of UWB MIMO time-reversal radio testbed,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 796–799, 2011.10.1109/LAWP.2011.2162717Search in Google Scholar
[7] I. M. Ben, L. Talbi, M. Nedil, and K. Hettak, “MIMO-UWB channel characterization within an undergroundmine gallery,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4866–4874, Oct. 2012.10.1109/TAP.2012.2207361Search in Google Scholar
[8] S. Lu, T. Hui, and M. Bialkowski, “Optimizing MIMO channel capacities under the influence of antenna mutual coupling,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 287–290, Jul. 2008.10.1109/LAWP.2008.928474Search in Google Scholar
[9] P. N. Fletcher, M. Dean, and A. R. Nix, “Mutual coupling in multi element array antennas and its influence on MIMO channel capacity,” Electron. Lett., vol. 39, no. 4, pp. 342–344, Feb. 2003.10.1049/el:20030219Search in Google Scholar
[10] C. C. Chiau, X. Chen, and C. G. Parini, “A miniature dielectric-loaded folded half-loop antenna and ground plane effects,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 1, pp. 459–462, Dec. 2005.10.1109/LAWP.2005.860210Search in Google Scholar
[11] Y. Gao, X. Chen, Z. Ying, and C. Parini, “Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3433–3441, Dec. 2007.10.1109/TAP.2007.910353Search in Google Scholar
[12] C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely packed antenna elements,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1732–1738, Jun. 2007.10.1109/TAP.2007.898618Search in Google Scholar
[13] T. Kokkinos, E. Liakou, and A. P. Feresidis, “Decoupling antenna elements of PIFA arrays on handheld devices,” IET Electron. Lett., vol. 44, no. 25, pp. 1442–1444, 2008.10.1049/el:20083032Search in Google Scholar
[14] M. Karaboikis, C. Soras, G. Tsachtsiris, and V. Makios, “Compact dual-printed inverted-F antenna diversity systems for portable wireless devices,” IEEE Antennas Wireless Propag. Lett., vol. 3, no. 1, pp. 9–14, Dec. 2004.10.1109/LAWP.2004.825106Search in Google Scholar
[15] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2936–2946, Oct. 2003.10.1109/TAP.2003.817983Search in Google Scholar
[16] E. Rajo-Iglesias, O. Quevedo-Teruel, and L. Inclan-Sanchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1648–1655, Jun. 2008.10.1109/TAP.2008.923306Search in Google Scholar
[17] T. S. P. See and Z. N. Chen, “An ultrawideband diversity antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1597–1605, 2009.10.1109/TAP.2009.2019908Search in Google Scholar
[18] A. Rajagopalan, G. Gupta, A. S. Konanur, B. Hughes, and G. Lazzi, “Increasing channel capacity of an ultrawideband MIMO system using vector antennas,” IEEE Trans. Antennas Propag., vol. 55, no. 10, pp. 2880–2887, 2007.10.1109/TAP.2007.905938Search in Google Scholar
[19] S. Zhang, B. K. Lau, A. Sunesson, and S. He, “Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4372–4380, 2012.10.1109/TAP.2012.2207049Search in Google Scholar
[20] H. K. Yoon, Y. J. Yoon, H. Kim, and C. H. Lee, “Flexible ultra-wideband polarization diversity antenna with band-notch function,” IET Microw. Antennas Propag., vol. 5, no. 12, pp. 1463–1470, Sep. 2011.10.1049/iet-map.2010.0126Search in Google Scholar
[21] J. M. Lee, K. B. Kim, H. K. Ryu, and J. M. Woo, “A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 990–993, Aug. 2012.10.1109/LAWP.2012.2214431Search in Google Scholar
[22] J. F. Li, Q. X. Chu, Z. H. Li, and X. X. Xia, “Compact dual band-notched UWB MIMO antenna with high isolation,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4759–4766, Sep. 2013.10.1109/TAP.2013.2267653Search in Google Scholar
[23] P. Gao, et al., “Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 376–379, Feb. 2014.10.1109/LAWP.2014.2305772Search in Google Scholar
[24] B. P. Chacko, G. Augustin, and T. A. Denidni, “Uniplanar polarization diversity antenna for wideband systems,” IET Microw. Antennas Propag., vol. 7, no. 10, pp. 851–857, Jul. 2013.10.1049/iet-map.2012.0732Search in Google Scholar
[25] M. Yazdi and N. Komjani, “Design of a band-notched UWB monopole antenna by means of an EBG structure,” IEEE Trans. Antenna Wireless Propag., vol. 10, pp. 170–173, Jan. 2011.10.1109/LAWP.2011.2116150Search in Google Scholar
[26] L. Peng and C. Ruan, “UWB band-notched monopole antenna design using electromagnetic-bandgap structures,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 1074–1081, April. 2011.10.1109/TMTT.2011.2114090Search in Google Scholar
[27] L. Liu, S. W. Cheung, and T. I. Yuk, “Compact MIMO antenna for portable UWB applications with band-notched characteristic,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 1917–1924, 2015.10.1109/TAP.2015.2406892Search in Google Scholar
[28] D. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissereration, Dept. Elect. Eng., Univ. California, Los Angeles, CA, 1999Search in Google Scholar
[29] F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge, U.K.: Cambridge University Press, 2009.10.1017/CBO9780511754531Search in Google Scholar
[30] O. Ahmed and A. R. Sebak, “A printed monopole antenna with two steps and a circular slot for UWB applications,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 411–413, 2008.10.1109/LAWP.2008.2001026Search in Google Scholar
[31] X. Mu, W. Jiang, S.-X. Gong, and F.-W. Wang, “Dual-band low profile directional antenna with high impedance surface reflector,” Prog. Electromagn. Res. Lett., vol. 25, pp. 67–75, 2011.10.2528/PIERL11051109Search in Google Scholar
[32] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, no. 9, pp. 705–707, May. 2003.10.1049/el:20030495Search in Google Scholar
[33] Y.-D. Dong, W. Hong, Z. Q. Kuai, and J. X. Chen, “Analysis of planar ultrawideband antennas with on-ground slot band-notched structures,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 1886–1893, Jul. 2009.10.1109/TAP.2009.2021910Search in Google Scholar
[34] L. Kang, H. Li, et al., “Compact offset microstrip-fed MIMO antenna for band-notched UWB application,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1754–1757, 2015.10.1109/LAWP.2015.2422571Search in Google Scholar
[35] R. Chandel and A. K. Gautam, “Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristics,” Electron. Lett., vol. 52, pp. 336–338, 2016.10.1049/el.2015.3889Search in Google Scholar
[36] J. Zhu, S. Li, et al., “Compact dual polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 905–908, 2015.10.1109/LAWP.2015.2479622Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston