Nothing Special   »   [go: up one dir, main page]

Skip to content
Publicly Available Published by De Gruyter November 3, 2021

Fully Discrete Finite Element Approximation of the MHD Flow

  • Yinnian He , Guo-Dong Zhang and Jun Zou EMAIL logo

Abstract

In this work, we consider a fully discrete finite element approximation of the 3D incompressible magnetohydrodynamic system. The velocity and magnetic field are approximated both by piecewise quadratic finite elements, while the pressure is approximated by piecewise linear finite elements. The time discretization is based on the Crank–Nicolson scheme for the linear terms in the model and the explicit Adams–Bashforth for the nonlinear terms. We establish the optimal error estimates of both the approximate velocity and magnetic field in H 1 -norm and of the approximate pressure in L 2 -norm. In order to achieve the optimal L 2 -norm error estimates of both the approximate velocity and magnetic field, we shall make use of a special negative norm technique.

MSC 2010: 65N30; 35Q35; 65N12; 76M10; 76W05

1 Introduction

This work is concerned with the following 3D incompressible magnetohydrodynamic (MHD) equations under the influence of body forces [11, 21, 28, 3, 25]:

(1.1) { u t - ν Δ u + p + ( u ) u + s B × ( × B ) = f in Ω × ( 0 , T ] , B t + μ × ( × B ) - × ( u × B ) = 0 in Ω × ( 0 , T ] , u = 0 , B = 0 in Ω × ( 0 , T ] ,

where Ω R 3 is an open bounded domain with a smooth boundary, 𝐮, 𝐁 and 𝑝 denote the velocity field, the magnetic field and the pressure, respectively. The three parameters 𝜈, 𝜇 and 𝑠 are given by ν = Re - 1 , μ = Re m - 1 , s = M 2 / ( Re Re m ) , respectively, with Re and Re m being the Reynolds number and the magnetic Reynolds number, and M > 0 being the Hartman number. For convenience, we shall often write r = ( x , y , z ) Ω , and the magnetic field 𝐁 as B ( t ) or B ( r , t ) ; the same for the pressure 𝑝 and velocity 𝐮.

System (1.1) couples the incompressible Navier–Stokes equations with Maxwell’s equations, and is considered in conjunction with the following initial boundary conditions [11, 21, 28, 3, 25]:

(1.2) u ( 0 ) = u 0 ( r ) , B ( 0 ) = B 0 ( r ) in Ω , u = 0 , B n = 0 , n × × B = 0 on Ω × [ 0 , T ] ,

where u 0 ( r ) = 0 and B 0 ( r ) = 0 , with 𝐧 being the unit outward normal vector of Ω .

We will frequently use the following spaces in our subsequent analysis:

M = L 0 2 ( Ω ) , X = H 0 1 ( Ω ) 3 , W = { C H 1 ( Ω ) ; C n | Ω = 0 } , H = { v L 2 ( Ω ) 3 , div v = 0 , v n | Ω = 0 } , V = X H , W 0 = W H , H k ( Ω ) = H k ( Ω ) 3 , k = 0 , 1 , 2 , 3 ,

as well as the following trilinear forms:

b ( w , u , v ) = ( ( w ) u + 1 2 ( w ) u , v ) Ω
= 1 2 ( ( w ) u , v ) Ω - 1 2 ( ( w ) v , u ) Ω for all w , u , v X ,
(1.3) d ( v , B , C ) = ( v × B , × C ) Ω for all v X , B , C W .

For the coupled MHD flow system (1.1)–(1.2), we are interested in its variational formulation: find ( u ( t ) , p ( t ) , B ( t ) ) X × M × W such that it satisfies for all ( v , q , C ) X × M × W the system

(1.4) ( u t , v ) Ω + ν ( u , v ) Ω - ( p , v ) Ω + ( u , q ) Ω + b ( u , u , v ) + s d ( v , B , B ) = ( f , v ) Ω ,
(1.5) ( B t , C ) Ω + μ ( × B , × C ) Ω - d ( u , B , C ) = 0 .

There are wide studies of the stability and convergence of the fully discrete second-order schemes based on the finite element spatial discretization for solving the time-dependent Navier–Stokes equations. For further exposition, we let 0 < h < 1 be the spatial mesh size and 0 < τ = T N < 1 a time step size, and we let u h m , B h m and p h m be the finite element approximate solutions of 𝐮, 𝐁 and 𝑝 at t = t m , respectively. We know that, for second-order or higher-order schemes for solving the time-dependent Navier–Stokes equations when the nonlinear term is treated explicitly, the stability or convergence is often achieved under the conditions of the form τ h - α C 0 for some α > 0 ; see, for example, [23, 2, 20, 29]. These conditions can be improved, e.g., in [13], where the Adams–Bashforth and Crank–Nicolson schemes were considered in combination with a finite element spatial discretization for solving the 2D time-dependent Navier–Stokes equations. It was proved in [13] that the stability and convergence are guaranteed under the condition τ C 0 and with the following error estimates:

u ( t m ) - u h m 0 κ σ - 1 ( t m ) τ 2 , ( u ( t m ) - u h m ) 0 κ σ - 1 2 ( t m ) τ , p ( t m ) - p h m 0 κ σ - 1 ( t m ) τ

for all t m ( 0 , T ] . Here σ ( t ) = min { 1 , t } , and 𝜅 is a generic positive constant depending on the data 𝜈, Ω, 𝑇, u 0 and 𝑓. Hereafter, we use 𝜅 to denote a generic positive constant depending on the data 𝜈, 𝜇, 𝑠, Ω, 𝑇, u 0 , B 0 and 𝑓. It was further shown in [15] that the convergence and stability of the Euler semi-implicit scheme for the 3D MHD equations can be also ensured under the condition τ C 0 .

In this work, we consider the Adams–Bashforth and Crank–Nicolson schemes for the time discretizations of the nonlinear and linear terms, respectively, and the finite element method for the spatial discretization for solving the time-dependent coupled MHD flow system (1.1)–(1.2) in three dimensions. Due to the explicit treatment of the nonlinear terms in the model, we cannot achieve the desired stability estimates of the fully discrete finite element solutions; therefore, it is hard for us to derive the optimal error estimates by means of existing approaches for both the Navier–Stokes equations and the coupled MHD flow system. We shall overcome this technical difficulty by a delicate induction method. Moreover, we are able to establish the optimal second-order convergence of the numerical velocity and magnetic field in the L 2 -norm by using a special negative-norm technique, while the standard discrete duality strategy [19, 30, 12, 14, 13] does not work.

The rest of the work is organized as follows. In § 2, some basic assumptions and inequalities related to the MHD flow and the basic properties of the finite element solution for the 3D MHD flow are presented. In § 3, we provide some estimates and smoothing properties of the finite element solution ( u h , p h , B h ) . In § 4, we develop a fully discrete finite element approximation based on the Crank–Nicolson/Adams–Bashforth scheme for the 3D MHD equations and then derive its truncation error estimates in § 5. In § 6, we establish the optimal error estimates for the numerical solution ( u h n , B h n , p h n ) and present some numerical experiments in § 7 to verify the convergence orders of the numerical scheme.

2 Finite Element Spatial Discretization for the MHD Flow

In this section, we discuss the finite element spatial discretization for the MHD equations (1.1)–(1.2). To do so, we first introduce a triangulation of the domain Ω. For the sake of technical treatments, we assume that the boundary of domain Ω is a closed convex polyhedron; the actual curved boundary case can be treated using some well-developed technicalities for the curved boundary in combination with the finite element error estimates established in the current work. Let T h be a triangulation of the polyhedral domain Ω, and let X h X , M h M = L 0 2 ( Ω ) and W h W be some continuous piecewise finite element spaces defined on T h . We shall also need the following subspace of X h :

V h = { v h X h ; ( v h , q h ) Ω = 0 for all q h M h } .

The finite element spaces X h X , M h M = L 0 2 ( Ω ) and W h W will be made clearer later.

Throughout this paper, we make the following two assumptions on the prescribed data and the solutions to system (1.4)–(1.5), which specify the regularities of the data and solutions needed for our main results. Hereafter, 𝑐, 𝜅 and c i , κ i for i 0 are some generic positive constants depending only on some of the given data 𝜈, 𝜇, 𝑠, Ω, 𝑇, u 0 , B 0 and 𝐟.

Assumption (A0)

The initial data u 0 H 2 ( Ω ) V , B 0 H 2 ( Ω ) W 0 and the force 𝐟 satisfy

sup 0 t T { f ( t ) 1 , Ω 2 + f t ( t ) 0 , Ω 2 + f t t ( t ) 0 , Ω 2 } + u 0 2 , Ω 2 + B 0 2 , Ω 2 κ 0 .

Assumption (A1)

Problem (1.4)–(1.5) has a unique solution ( u ( t ) , p ( t ) , B ( t ) ) X × M × W , with the a priori estimates

0 T ( u ( t ) 0 , Ω 4 + × B ( t ) 0 , Ω 4 ) d t κ .

Also, we assume that the domain Ω is smooth to ensure the following estimates [4, 17, 7, 6, 26].

Assumption (A2)

The unique solution ( v , q ) of the steady Stokes problem

- Δ v + q = g , v = 0 in Ω ; v | Ω = 0 ,

for prescribed g H k - 2 ( Ω ) 3 with k = 2 , 3 satisfies

v k , Ω + q k - 1 , Ω c g k - 2 , Ω ,

and the steady Maxwell equations

× × C = h , C = 0 in Ω , n × × C = 0 , C n = 0 on Ω ,

for the prescribed h H k - 2 ( Ω ) with k = 2 , 3 admit a unique solution C W 0 which satisfies

C k , Ω c h k - 2 , Ω .

We shall often use the Stokes operator A 1 = - P Δ and the Maxwell operator A 2 = P × × , with

D ( A 1 ) = H 2 ( Ω ) 3 V , D ( A 2 ) = H 2 ( Ω ) W 0 .

Here 𝑃 is an L 2 -projection from L 2 ( Ω ) 3 into 𝐇.

Now we make a standard approximation assumption on the finite element space system ( X h , M h , W h ) [1, 5, 10, 17, 18, 24, 9, 27].

Assumption (A3)

For each v H i ( Ω ) V , q H i - 1 ( Ω ) M and C H i ( Ω ) 3 W 0 for i = 2 , 3 , there exist the approximations π h v V h , ρ h q M h and J h C W h such that

( v - π h v ) 0 , Ω c 1 h i - 1 v i , Ω , q - ρ h q 0 , Ω c 1 h i - 1 q i - 1 , Ω , C - J h C 0 , Ω + × ( C - J h C ) 0 , Ω c 1 h i - 1 ( C i - 1 , Ω + × C i - 1 , Ω ) ,

along with the inverse inequalities (with q p )

v h 0 , Ω c 1 h - 1 v h 0 , Ω for all v h X h , C h L q c h 3 ( 1 q - 1 p ) C h L p , C h 0 , Ω c 1 h - 1 C h 0 , Ω for all C h W h ,

and the so-called inf-sup inequality

sup v h X h ( v h , q h ) Ω v h 0 , Ω β 1 q h 0 , Ω for all q h M h .

Here is an example of the finite element spaces ( X h , M h , W h ) that satisfy Assumption (A3) above (cf. [3, 25]):

X h = { v h C ( Ω ¯ ) X ; v h | K P 2 ( K ) 3 for all K T h } , M h = { q h C ( Ω ¯ ) M ; q h | K P 1 ( K ) for all K T h } , W h = { C h C ( Ω ¯ ) W ; C h | K P 2 ( K ) 3 for all K T h } .

Now we formulate the semi-discrete finite element approximation of system (1.4)–(1.5), whose properties will be crucial to our error estimates of the finite element solution to the fully discrete scheme: find ( u h ( t ) , p h ( t ) , B h ( t ) ) X h × M h × W h such that it satisfies, for all ( v h , q h , C h ) X h × M h × W h ,

(2.1) ( u h t , v h ) Ω + ν ( u h , v h ) Ω - ( v h , p h ) Ω + ( u h , q h ) Ω + b ( u h , u h , v h ) + s d ( v h , B h , B h ) = ( f , v h ) Ω ,
(2.2) ( B h t , C h ) Ω + μ ( × B h , × C h ) Ω + μ ( B h , C h ) Ω - d ( u h , B h , C h ) = 0 ,
with u h ( 0 ) = P h u 0 and B h ( 0 ) = R 0 h B 0 , where P h and R 0 h are the L 2 -projections from L 2 ( Ω ) 3 to V h and W h . It follows from Assumption (A3) that, for any v H i ( Ω ) 3 V and C H i ( Ω ) W 0 for i = 1 , 2 , 3 ,
v - P h v 0 , Ω + h ( v - P h v ) 0 , Ω c 2 h i v i , Ω ,
(2.3) C - R 0 h C 0 , Ω + h ( C - R 0 h C ) 0 , Ω c 2 C i , Ω ,
We shall often use the discrete Stokes operator A h = - P h Δ h , where - Δ h is defined by

( - Δ h u h , v h ) = ( u h , v h ) for all u h , v h X h ,

and the A h -induced discrete norm v h α = A h α 2 v h 0 , Ω for α R . In particular, we have

v h 1 = v h 0 , Ω , v h 2 = A 1 h v h 0 , Ω , v h - 1 = A 1 h - 1 2 v h 0 , Ω for all v h V h .

Similarly to the discrete Stokes operator A h , we define the discrete Maxwell operator A 2 h as follows: for any B h W h , A 2 h B h = R 0 h ( h × × B h + h B h ) W h , satisfying

( A 2 h B h , C h ) Ω = ( A 2 h 1 2 B h , A 2 h 1 2 C h ) Ω = ( × B h , × C h ) Ω + ( B h , C h ) Ω for all C h W h .

We will also use the A 2 h -induced discrete norm B h α = A 2 h α 2 B h 0 , Ω for any α R . Then we have

B h 0 2 = B h 0 , Ω 2 , B h 1 2 = A 2 h 1 2 B h 0 , Ω 2 = B h 0 , Ω 2 + × B h 0 , Ω 2 , B h 2 2 = A 2 h B h 0 , Ω 2 = R 0 h ( h × × B h + h B h ) 0 , Ω 2 , B h - 1 = A 2 h - 1 2 B h 0 , Ω = sup C h W h ( B h , C h ) Ω C h 1 .

We end this section by recalling some stability and error estimates of the solution ( u ( t ) , p ( t ) , B ( t ) ) to system (1.4)–(1.5) and the numerical solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to the semi-discrete system (2.1)–(2.2) [16].

Lemma 2.1

Under Assumptions (A0)(A3), it holds that

u ( t ) 2 , Ω 2 + p ( t ) 1 , Ω 2 + B ( t ) 2 , Ω 2 + 0 T [ u ( t ) 3 , Ω 2 + p ( t ) 2 , Ω 2 + B ( t ) 3 , Ω 2 ] d t κ , u h ( t ) 0 , Ω 2 + B h ( t ) 0 , Ω 2 + 0 T [ u h ( t ) 0 , Ω 2 + B h ( t ) 0 , Ω 2 ] d t κ .

Theorem 2.1

Under Assumptions (A0)(A3), the following error estimates hold for all t ( 0 , T ] :

u ( t ) - u h ( t ) 0 , Ω 2 + B ( t ) - B h ( t ) 0 , Ω 2 + 0 T [ ( u ( t ) - u h ( t ) ) 0 , Ω 2 + ( B ( t ) - B h ( t ) ) 0 , Ω 2 ] d t κ h 4 ,
0 T [ u ( t ) - u h ( t ) 0 , Ω 2 + B ( t ) - B h ( t ) 0 , Ω 2 ] d t κ h 6 ,
σ ( t ) [ u ( t ) - u h ( t ) 0 , Ω 2 + B ( t ) - B h ( t ) 0 , Ω ] + h 2 σ 2 ( t ) p ( t ) - p h ( t ) 0 , Ω    + σ ( t ) h 2 [ ( u ( t ) - u h ( t ) ) 0 , Ω 2 + ( B ( t ) - B h ( t ) ) 0 , Ω 2 ] κ h 6 .

Lemma 2.2

Under Assumptions (A0)(A3), there hold

A h - 1 P h A 1 v - v 0 , Ω + h ( A h - 1 P h A 1 v - v ) 0 , Ω c h i v i , Ω , A 1 - 1 P A h v h - v h 0 , Ω + h ( A 1 - 1 P A h v h - v h ) 0 , Ω c h i v h i

for all v H i ( Ω ) V and v h V h with i = 2 , 3 , and

A 2 h - 1 R 0 h A 2 C - C 0 , Ω + h ( A 2 h - 1 R 0 h A 2 C - C ) 0 , Ω c h i C i , Ω , A 2 - 1 P A 2 h C h - C h 0 , Ω + h ( A 2 - 1 P A 2 h C h - C h ) 0 , Ω c h i C h i

for all C H i ( Ω ) W 0 and C h W h with i = 2 , 3 .

3 Basic Estimates and Smoothing Properties of Discrete Solutions

In this section, we present some discrete inequalities of finite element functions and some smoothing properties of the finite element solution ( u h , p h , B h ) to the semi-discrete system (2.1)–(2.2). First, we recall some discrete Gadliardo–Nirenberg estimates [17, 18]:

v h L 3 + v h L c v h 0 , Ω 1 2 A 1 h v h 0 , Ω 1 2 , v h L 6 c A h v h 0 for all v h V h ,
(3.1) A h P h v 0 , Ω c A 1 v 0 , Ω for all v D ( A 1 ) .

By using Assumptions (A2)(A3) and some similar arguments to the ones used by Heywood and Rannacher in [17], we can prove the following discrete Gadliardo–Nirenberg estimates.

Lemma 3.1

Under Assumptions (A2)(A3), there hold, for any C h W h ,

(3.2) C h L 6 c C h 1 , Ω , C h 1 , Ω c A 2 h 1 2 C h 0 , Ω ,
C h L + C h L 3 c A 2 h 1 2 C h 0 , Ω 1 2 A 2 h C h 0 , Ω 1 2 ,
(3.3) C h L 6 c A 2 h C h 0 .

Proof

First, we can easily get (3.2) using the fact that W h W and the following inequalities from [7]:

C L 6 c C 1 , Ω , C 1 , Ω c × C 0 , Ω + c C 0 , Ω for all C W .

To derive (3.3), we define the discrete Laplace operator Δ h on W h by

( - Δ h C h , ϕ h ) Ω = ( C h , ϕ h ) Ω for all C h , ϕ h W h ,

and recall the following inequalities [17]:

C h L 6 c Δ h C h 0 , Ω ,
(3.4) C h L + C h L 3 c C h 0 , Ω 1 2 Δ h C h 0 , Ω 1 2 for all C h W h .
Now let C W 0 be the solution to the system

× × C = P A 2 h C h , n × × C | Ω = 0 .

Then we have from Lemma 2.2 and Assumption (A2) that

(3.5) ( C - C h ) 0 , Ω + h C 2 , Ω c h A 2 h C h 0 , Ω .

By using Assumption (A3) and (3.5), we can derive

Δ h C h 0 , Ω sup ϕ h W h ( C h , ϕ h ) Ω ϕ h 0 , Ω c h - 1 ( C h - C ) 0 , Ω + c C 2 , Ω c A 2 h C h 0 , Ω ,

Now (3.3) follows from this and (3.4) and hence concludes the proof of Lemma 3.1. ∎

Lemma 3.2

Under Assumptions (A2)(A3), the following estimates hold for all u h , v h , w h V h :

b ( u h , v h , w h ) = - b ( u h , w h , v h ) ,
(3.6) | b ( u h , v h , w h ) | + | b ( w h , u h , v h ) | + | b ( v h , u h , w h ) | c 0 2 A h u h 0 , Ω v h 1 1 2 v h 2 1 2 w h - 1 + c 0 2 A h v h 0 , Ω u h 1 1 2 u h 2 1 2 w h - 1 .

Proof

The first relation comes from a direct computing. To derive (3.6), we let ϕ h = A h - 1 w h for each w h V h , then apply the inverse inequality to get

w h 0 2 = ( w h , A h ϕ h ) Ω = ( w h , ϕ h ) Ω w h 1 w h - 1 c h - 1 w h 0 w h - 1 .

Now we rewrite b ( u h , v h , w h ) as

(3.7) b ( u h , v h , w h ) = ( ( u h ) ( v h - A 1 - 1 P A h v h ) , w h ) + ( P h ( u h ) A 1 - 1 P A h v h , w h ) + 1 2 ( ( u h - A 1 - 1 P A h u h ) v h , w h ) .

But, using Lemma 2.2, we can readily derive

| ( ( u h ) ( v h - A 1 - 1 P A h v h ) , w h ) | u h L ( v h - A 1 - 1 P A h v h ) 0 , Ω w h 0 c h u h 0 , Ω 1 2 A h u h 0 , Ω 1 2 A h v h 0 , Ω w h 0 c u h 1 1 2 u h 2 1 2 A h v h 0 , Ω w h - 1 ,
| ( P h ( u h ) A 1 - 1 P A h v h , w h ) | ( P h ( u h ) A - 1 P A h v h ) 0 , Ω w h - 1 c ( ( u h ) A 1 - 1 P A h v h ) 0 , Ω w h - 1 c u h L 3 ( A 1 - 1 P A h v h ) L 6 w h - 1 c u h 0 , Ω 1 2 A h u h 0 , Ω 1 2 A h v h 0 , Ω w h - 1 ,
1 2 | ( ( u h - A 1 - 1 P A h u h ) v h , w h ) | ( u h - A - 1 P A h v h ) 0 , Ω v h L w h 0 c A h u h 0 , Ω v h 0 , Ω 1 2 A h v h 0 , Ω 1 2 w h - 1 .
Combining the above inequalities with (3.7) yields

| b ( u h , v h , w h ) | 1 6 c 0 A h u h 0 , Ω v h 2 1 2 v h 1 1 2 w h - 1 + 1 6 c 0 A h v h 0 , Ω u h 2 1 2 u h 1 1 2 w h - 1 .

Similarly, we can estimate b ( v h , u h , w h ) , b ( w h , u h , v h ) ; then (3.6) is a consequence of these estimates. ∎

Lemma 3.3

For all u h V h , B h and C h W 0 h , the trilinear form 𝑑 in (1.3) satisfies the estimates

(3.8) | d ( u h , B h , C h ) | + | d ( u h , C h , B h ) | c 3 2 A h u h 0 , Ω B h 2 1 2 B h 1 1 2 C h - 1 + c 3 2 u h 1 1 2 u h 2 1 2 A 2 h B h 0 , Ω C h - 1 ,
(3.9) | d ( u h , B h , C h ) | + | d ( u h , C h , B h ) | c 3 2 u h - 1 B h 1 1 2 B h 2 1 2 A 2 h C h 0 , Ω + c 3 2 u h - 1 A 2 h B h 0 , Ω C h 1 1 2 C h 2 1 2 .

Proof

We write u = A 1 - 1 P A h u h , B = A 2 - 1 P A 2 h B h , and rewrite d ( u h , B h , C h ) as

(3.10) d ( u h , B h , C h ) = ( u h × B h , × C h ) Ω = ( u h × ( B h - B ) , × C h ) Ω + ( u h - u ) × B , × C h ) Ω + ( R 0 h [ ( B ) u - ( u ) B ] , C h ) Ω = : I 1 + I 2 + I 3 .

Then we can derive by using (3.1)–(3.3), (2.3), Lemma 2.2 and Assumptions (A2)(A3) that

u 1 , Ω c u h 1 , B 1 , Ω c B h 1 , u 2 , Ω c A h u h 0 , Ω , B 2 , Ω c A 2 h B h 0 , Ω , × C h 0 , Ω c h - 1 C h 0 , Ω , C h 0 2 C h 1 C h - 1 c h - 1 C h 0 C h - 1 .

Using these estimates, along with (3.1)–(3.3), we can bound I 1 , I 2 and I 3 as follows:

I 1 2 u h L B h - A 2 - 1 P A 2 h B h 0 , Ω × C h 0 , Ω c u h 1 1 2 u h 2 1 2 A 2 h B h 0 , Ω C h - 1 ,
I 2 2 B h L u h - A 1 - 1 P A h u h 0 , Ω × C h 0 , Ω c B h 1 1 2 B h 2 1 2 A h u h 0 , Ω C h - 1 ,
I 3 A 2 h 1 2 R 0 h [ ( B ) u - ( u ) B ] 0 , Ω C h - 1 c A 2 1 2 [ ( B ) u - ( u ) B ] 0 , Ω C h - 1 c B L ( u L 2 + u L 2 ) C h - 1 + c [ B L 3 ( u L 6 + u L 6 ) + c B L 2 u L ] C h - 1 c [ B h 1 1 2 B h 2 1 2 A h u h 0 , Ω + c A 2 h B h 0 , Ω u h 1 1 2 u h 2 1 2 ] C h - 1 .
Now it follows readily from the above inequalities and (3.10) that

(3.11) | d ( u h , B h , C h ) | c B h 1 1 2 B h 2 1 2 A h u h 0 , Ω C h - 1 + c A 2 h B h 0 , Ω u h 1 1 2 u h 2 1 2 C h - 1 .

Similarly, we can rewrite d ( u h , C h , B h ) as

(3.12) d ( u h , C h , B h ) = ( ( u h - u ) × C h , × B h ) Ω - ( u × ( × ( B h - B ) ) , C h ) Ω - ( R 0 h [ u × ( × B ) ] , C h ) Ω = : J 1 + J 2 + J 3 .

Then we can deduce from (3.1)–(3.3), (2.3), Lemma 2.2 and Assumption (A3) that

J 1 2 u h - u L 6 C h L 2 × B h L 3 c A h u h 0 , Ω B h 1 1 2 B h 2 1 2 C h - 1 ,
J 2 2 u L × ( B h - B ) 0 , Ω C h 0 , Ω c u h 1 1 2 u h 2 1 2 A 2 h B h 0 , Ω C h - 1 ,
J 3 A 2 h 1 2 R 0 h [ u × ( × B ) ] 0 , Ω C h - 1 A 2 1 2 [ u × ( × B ) ] 0 , Ω C h - 1 c u L ( × B L 2 + × × B L 2 ) C h - 1 + c u L 3 × B L 6 C h - 1 c u h 1 1 2 u h 2 1 2 A 2 h B h 0 , Ω C h - 1 .
A direct application of these estimates to (3.12) yields

| d ( u h , C h , B h ) | c B h 1 1 2 B h 2 1 2 A h u h 0 , Ω C h - 1 + c A 2 h B h 0 , Ω u h 1 1 2 u h 2 1 2 C h - 1 ,

which, along with (3.11), gives (3.8). Similarly, we can prove (3.9). ∎

Next, we derive some smoothing properties of the semi-discrete solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to system (2.1)–(2.2).

Lemma 3.4

Under Assumptions (A0)(A3), it holds, for all t [ 0 , T ] ,

u h ( t ) 1 2 + s B h ( t ) 1 2 + 0 t [ ν u h 2 2 + s μ B h 2 2 + u h t 0 2 + s B h t 0 2 ] d t κ .

Proof

Summing up equation (2.1) with ( v h , q h ) = ( A h u h , 0 ) and equation (2.2) with C h = s A 2 h B h , and using Young’s inequality, we obtain the energy inequality

(3.13) 1 2 d d t A h 1 2 u h 1 2 + ν A h u h 0 , Ω 2 + s 2 d d t B h 1 2 + s μ A 2 h B h 0 , Ω 2 + b ( u h , u h , A h u h ) + s d ( A h u h , B h , B h ) - s d ( u h , B h , A 2 h B h ) ν 8 A h u h 0 , Ω 2 + 4 ν f 0 , Ω 2 .

Then, using (3.1)–(3.2) and Young’s inequality, we further derive

| b ( u h , u h , A h u h ) | u h L u h L 2 A h u h L 2 c 0 u h 0 , Ω 3 2 A h u h 0 , Ω 3 2 ν 8 A h u h 0 , Ω 2 + ( 4 ν ) 3 c 0 4 u h 0 , Ω 4 A h 1 2 u h 0 , Ω 2 ,
s | d ( A h u h , B h , B h ) | s 2 A h u h L 2 B h L 6 × B h L 3 s c 0 A h u h 0 , Ω A 2 h 1 2 B h 0 , Ω A 2 h B h 0 , Ω 1 2 × B h 0 , Ω 1 2 ν 16 A h u h 0 , Ω 2 + s μ 16 A 2 h B h 0 , Ω 2 + 4 3 ν - 2 μ - 1 s 3 c 0 4 × B h 0 , Ω 2 A 2 h 1 2 B h 0 , Ω 4 ,
s | d ( u h , B h , A 2 h B h ) | ( B h L 6 u h L 3 + u h L B h L 2 ) A 2 h B h 0 , Ω s c 0 u h 0 , Ω 1 2 A h u h 0 , Ω 1 2 A 2 h 1 2 B 0 , Ω A 2 h B h 0 , Ω s μ 16 A 2 h B h 0 , Ω 2 + ν 16 A h u h 0 , Ω 2 + 4 ν ( 4 μ ) 2 s 2 c 0 4 u h 0 , Ω 2 A 2 h 1 2 B h 0 , Ω 4 .
Combining the above inequalities with (3.13) yields

d d t u h 1 2 + ν A h u h 0 , Ω 2 + s d d t B h 1 2 + s μ A 2 h B h 0 , Ω 2 8 ν f 0 , Ω 2 + c ( μ + u h 0 , Ω 4 + B h 0 , Ω 4 + × B h 0 , Ω 4 ) ( u h 1 2 + s B h 1 2 ) .

Integrating both sides from 0 to 𝑡 and using Lemma 2.1 and Assumption (A0), we obtain

(3.14) u h ( t ) 1 2 + s B h ( t ) 1 2 + 0 t ( ν A h u h 0 , Ω 2 + s μ A 2 h B h 0 , Ω 2 ) d s κ 1 + 0 t c ( h u h 0 , Ω 4 + × B h 0 , Ω 4 ) ( u h 1 2 + s B h 1 2 ) d s .

Now, applying Gronwall’s inequality to (3.14), we readily get

(3.15) u h ( t ) 1 2 + s B h ( t ) 1 2 + 0 t ( ν A h u h 0 , Ω 2 + s μ A 2 h B h 0 , Ω 2 ) d s κ exp { c 0 T ( h u h 0 , Ω 4 + × B h 0 , Ω 4 ) d s } .

But it follows from Assumption (A3) and Lemma 2.1 that

0 T ( h u h 0 , Ω 4 + × B h 0 , Ω 4 ) d s 2 0 T ( u 0 , Ω 2 u h 0 , Ω 2 + × B 0 , Ω 2 × B h 0 , Ω 2 ) d s + 2 0 T ( ( u - u h ) 0 , Ω 2 u h 0 , Ω 2 + × ( B - B h ) 0 , Ω 2 × B h 0 , Ω 2 ) d s κ .

This, along with (3.15) and applying the Gronwall lemma to (3.14), yields

(3.16) u h ( t ) 1 2 + s B h ( t ) 1 2 + 0 t ( ν A h u h 0 , Ω 2 + s μ A 2 h B h 0 , Ω 2 ) d s κ .
Furthermore, we readily derive from (2.1)–(2.2), (3.1)–(3.2) and the Hölder inequality that
u h t 0 ν A h u h 0 , Ω + c u h L u h L 2 + c s B h L 6 × B h L 3 + f 0 , Ω ν A h u h 0 , Ω + c A h u h 0 , Ω u h 1 + c A 2 h B h 0 , Ω B h 1 + c f 0 , Ω ,
B h t 0 μ A 2 h B h 0 , Ω + c u h L 3 B h L 6 + c B h L 2 u h L μ A 2 h B h 0 , Ω + c A h u h 0 , Ω B h 1 .
Combining these inequalities with (3.16) concludes the proof of Lemma 3.4. ∎

Lemma 3.5

Under Assumptions (A0)(A3), the solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to the semi-discrete system (2.1)–(2.2) satisfies

(3.17) { u h t ( t ) 0 2 + s B h t ( t ) 0 2 + u h ( t ) 2 2 + - ν Δ h u h ( t ) + h p h ( t ) 0 , Ω 2 + B h ( t ) 2 } + 0 t ( ν u h t ( s ) 1 2 + s μ B h t ( s ) 1 2 + u h t t - 1 2 + B h t t - 1 2 ) d s κ for all t [ 0 , T ] .

Proof

Differentiating (2.1) and (2.2) with respect to 𝑡, we obtain, for all ( v h , q h , C h ) X h × M h × W h ,

(3.18) ( u h t t , v h ) Ω + ν ( u h t , v h ) Ω - ( v h , p h t ) Ω + ( u h t , q h ) Ω        + b ( u h t , u h , v h ) + b ( u h , u h t , v h ) + s d ( v h , B h t , B h ) + s d ( v h , B h , B h t ) = ( f t , v h ) Ω ,
(3.19) ( B h t t , C h ) Ω + μ ( × B h t , × C h ) Ω + μ ( B h t , C h ) Ω - d ( u h t , B h , C h ) - d ( u h , B h t , C h ) = 0 .
Summing up (3.18) with ( v h , q h ) = ( u h t , p h t ) and (3.19) with C h = s B h t and then using (3.6), we derive

(3.20) 1 2 d d t u h t 0 2 + ν u h t 1 2 + s 2 d d t B h t 0 2 + s μ B h t 1 2 + b ( u h t , u h , u h t ) + s d ( u h t , B h t , B h ) - s d ( u h , B h t , B h t ) = ν 8 u h t 1 2 + 4 ν γ 2 f t 0 , Ω 2 ,

where 𝛾 is the Poincaré constant satisfying u 0 , Ω γ u 0 , Ω .

Using (3.1)–(3.2), we can estimate the three trilinear terms in (3.20) as follows:

| b ( u h t , u h , u h t ) | c 0 u h 2 u h t 0 u h t 1 ν 16 u h t 1 2 + 4 ν c 0 2 u h 2 2 u h t 0 2 , s | d ( u h t , B h t , B h ) | 2 s u h t L 6 B h t L 2 × B h L 3 ν 16 u h t 1 2 + s 2 c 0 2 4 ν B h 2 2 B h t 0 2 , s | d ( u h , B h t , B h t ) | s c 0 B h t 1 u h 2 B h t 0 s μ 16 B h t 1 2 + 4 μ s c 0 2 u h 2 2 B h t 0 2 .

Combining these three estimates with (3.20) yields

d d t ( u h t 0 2 + s B h t 0 2 ) + ( ν u h t 1 2 + s μ B h t 1 2 ) c ( μ + ν u h 2 2 + s μ B h 2 2 ) ( u h t 0 2 + s B h t 0 2 ) + c f t 0 , Ω 2 .

Integrating both sides from 0 to 𝑡 and using Gronwall’s lemma and Lemmas 2.1 and 3.4, we obtain

(3.21) u h t ( t ) 0 2 + s B h t ( t ) 0 2 + 0 t ( ν u h t 1 2 + s μ B h t 1 2 ) d s κ .

We continue estimating the remaining terms in (3.17). First, we can bound the two negative-norm terms by directly using equations (2.1)–(2.2),

(3.22) u h t t - 1 ν u h t 1 + c u h t 1 u h 1 + c B h t 1 B h 1 + c f t 0 , Ω ,
(3.23) B h t t - 1 2 μ B h t 1 + c u h t 1 B h 1 + c u h 1 B h t 1 .
To bound the term - ν Δ h u h ( t ) + h p h ( t ) , we can use (2.1)–(2.2), (3.1)–(3.2) and Young’s inequality to deduce

(3.24) ν A h u h ( t ) 0 , Ω u h t ( t ) 0 + f ( t ) 0 , Ω + u h L 2 u h L + s 2 B h L 6 × B h L 3 ν 4 A h u h ( t ) 0 , Ω + μ 4 A 2 h B h 0 , Ω + c u h ( t ) 1 3 + c B h 1 3 + u h t ( t ) 0 , Ω + c f ( t ) 0 , Ω , μ A 2 h B h ( t ) 0 , Ω μ B h ( t ) - B h t ( t ) 0 , Ω + c u h ( t ) L 3 B h ( t ) L 6 2 + c u h ( t ) L B h ( t ) L 2 ν 4 A h u h ( t ) 0 , Ω + c μ B h ( t ) - B h t ( t ) 0 , Ω + c u h ( t ) 1 B h ( t ) 1 2 .

Then we can readily get

(3.25) - ν Δ h u h + h p h 0 , Ω u h t 0 + c u h L u h L 2 + c s B h L 6 × B h L 3 + f 0 , Ω u h t 0 + c A h u h 0 , Ω u h 1 + c A 2 h B h 0 , Ω B h 1 + c f 0 , Ω ,

Now, combining estimates (3.21)–(3.25) and using Lemma 3.4, we can see the desired estimate (3.17). ∎

Lemma 3.6

Under Assumptions (A0)(A3), the solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to the semi-discrete system (2.1)–(2.2) satisfies the estimate

σ ( t ) [ u h t ( t ) 1 2 + s B h t ( t ) 1 2 + u h t t ( t ) - 1 2 + B h t t ( t ) - 1 2 ] + 0 t σ ( s ) ( ν A h u h t ( s ) 0 , Ω 2 + - ν Δ h u h t ( s ) + h p h t ( s ) 0 , Ω 2 + s μ A 2 h B h t ( s ) 0 , Ω 2 ) d s + 0 t σ ( s ) ( u h t t ( s ) 0 2 + B h t t ( s ) 0 , Ω 2 ) d s κ for all t [ 0 , T ] .

Proof

Taking the sum of (3.18) with ( v h , q h ) = ( A h u h t , 0 ) and (3.19) with C h = s A 2 h B h t , we obtain

(3.26) 1 2 d d t u h t 1 2 + ν A h u h t 0 , Ω 2 + s 2 d d t B h t 1 2 + s μ A 2 h B h t 0 , Ω 2 + b ( u h , u h t , A h u h t ) + b ( u h t , u h , A h u h t ) + s d ( A h u h t , B h t , B h ) + s d ( A h u h t , B h , B h t ) - s d ( u h t , B h , A 2 h B h t ) - s d ( u h , B h t , A 2 h B h t ) = ν 8 A h u h t 0 , Ω 2 + 4 ν f t 0 , Ω 2 .

Using (3.1)–(3.2), we can further bound all the trilinear terms above as follows:

| b ( u h t , u h , A h u h t ) | + | b ( u h , u h t , A h u h t ) | c 0 u h 2 u h t 1 A h u h t 0 , Ω ν 16 A h u h t 0 , Ω 2 + 4 ν c 0 2 u h 2 2 u h t 1 2 ,
s | d ( A h u h t , B h t , B h ) | + s | d ( A h u h t , B h , B h t ) | s c 0 A h u h t 0 , Ω B h 2 B h t 1 ν 16 A h u h t 0 , Ω 2 + 4 ν s 2 c 0 2 B h 2 2 B h t 1 2 ,
s | d ( u h t , B h , A 2 h B h t ) | + s | d ( u h , B h t , A 2 h B h t ) | s c 0 A 2 h B h t 0 , Ω ( u h 2 B h t 1 + B h 2 u h t 1 ) s μ 16 A 2 h B h t 0 , Ω 2 + μ - 1 4 2 s c 0 2 ( u h 2 2 + B h 2 2 ) ( u h t 1 2 + B h t 1 2 ) .
Combining the above inequalities with (3.26) yields

(3.27) d d t ( u h t 1 2 + s B h t 1 2 ) + ( ν A h u h t 0 , Ω 2 + s μ A 2 h B h t 0 , Ω 2 ) c ( μ + u h 2 2 + B h 2 2 ) ( u h t 1 2 + s B h t 1 2 ) + c f t 0 , Ω 2 .

Multiplying (3.27) by σ ( t ) , integrating with respect to 𝑡, and then using Lemmas 3.43.5, we readily get

(3.28) σ ( t ) ( u h t ( t ) 1 2 + s B h t ( t ) 1 2 ) + 0 t σ ( t ) ( ν A h u h t 0 , Ω 2 + s μ A 2 h B h t 0 , Ω 2 ) d s κ .

Furthermore, we can derive from (3.18)–(3.19) and (3.1)–(3.2) that

u h t t 0 f t 0 + ν A h u h t 0 , Ω + c u h t 1 u h 2 + s c B h t 1 B h 2 ,
(3.29) - ν Δ h u h t + h p h t 0 , Ω u h t t 0 + f t 0 + c u h t 1 u h 2 + s c B h t 1 B h 2 ,
(3.30) B h t t 0 μ A 2 h B h t 0 , Ω + c u h t 1 B h 2 + c B h t 1 u h 2 .
Combining (3.29)–(3.30) with (3.28) and using Lemmas 3.43.5, we conclude the proof of Lemma 3.6. ∎

Lemma 3.7

Under Assumptions (A0)(A3), the solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to the semi-discrete system (2.1)–(2.2) satisfies the estimate

(3.31) σ 2 ( t ) [ u h t t ( t ) 0 2 + s B h t t ( t ) 0 2 ] + 0 t σ 2 ( t ) [ ν u h t t ( s ) 1 2 + s μ B h t t ( s ) 1 2 + u h t t t - 1 2 + B h t t t - 1 2 ] d s + 0 t σ ( t ) [ u h t t t - 2 2 + B h t t t - 2 2 ] d s κ ,
(3.32) σ 2 ( t ) [ u h t ( t ) 2 2 + B h t ( t ) 2 2 + p h t ( t ) 0 , Ω 2 ] κ .

Proof

Differentiating (3.18) and (3.19) with respect to 𝑡, we derive, for all ( v h , q h , C h ) X h × M h × W h ,

(3.33) ( u h t t t , v h ) Ω + ν ( u h t t , v h ) Ω - ( v h , p h t t ) Ω + ( u h t t , q h ) Ω + b ( u h t t , u h , v h ) + 2 b ( u h t , u h t , v h ) + b ( u h , u h t t , v h ) + s d ( v h , B h t t , B h ) + 2 s d ( v h , B h t , B h t ) + s d ( v h , B h , B h t t ) = ( f t t , v h ) Ω ,
(3.34) ( B h t t t , C h ) Ω + μ ( × B h t t , × C h ) Ω + μ ( B h t t , C h ) Ω - d ( u h t t , B h , C h ) - 2 d ( u h t , B h t , C h ) - d ( u h , B h t t , C h ) = 0 ,
Taking the sum of (3.33) with ( v h , q h ) = ( u h t t , p h t t ) and (3.34) with C h = s B h t t and using (3.6), we have

(3.35) 1 2 d d t u h t t 0 2 + ν u h t t 1 2 + s 2 d d t B h t t 0 2 + s μ B h t t 1 2 + b ( u h t t , u h , u h t t ) + 2 b ( u h t , u h t , u h t t ) + s d ( u h t t , B h t t , B h ) + 2 s d ( u h t t , B h t , B h t ) - 2 s d ( u h t , B h t , B h t t ) - s d ( u h , B h t t , B h t t ) = ν 16 u t t 1 2 + 4 ν γ 2 f t t 0 , Ω 2 .

Using (3.1)–(3.2), we can estimate all the trilinear terms above as follows:

| b ( u h t t , u h , u h t t ) | c 0 u h 2 u h t t 0 u t t 1 ν 16 u t t 1 2 + 4 ν c 0 2 u h 2 2 u h t t 0 2 ,
2 | b ( u h t , u h t , u h t t ) | c 0 u h t 1 2 u h t t 1 ν 16 u h t t 1 2 + 4 ν c 0 2 u h t 1 4 ,
s | d ( u h t t , B h t t , B h ) | + s | d ( u h , B h t t , B h t t ) | s c 0 ( u h t t 1 B h 2 + B h t t 1 u h 2 ) B h t t 0 ν 16 u h t t 1 2 + s μ 16 B h t t 1 2 + ( 4 ν s 2 c 0 2 B h 2 2 + 4 μ s c 0 2 u h 2 2 ) B h t t 0 2 ,
s | d ( u h t t , B h t , B h t ) | + s | d ( u h t , B h t , B h t t ) | s c 0 u h t t 1 B h t 1 2 + s c 0 u h t 1 B h t 1 B h t t 1 ν 16 u h t t 1 2 + s μ 16 B h t t 1 2 + ( 4 ν s 2 c 0 2 B h t 1 2 + 4 μ s c 0 2 u h t 1 2 ) B h t 1 2 .
Combining the above inequalities with (3.35) yields

d d t ( u h t t 0 2 + s B h t t 0 2 ) + ν u h t t 1 2 + s μ B h t t 1 2 c f t t 0 , Ω 2 + c ( μ + B h 2 2 + u h 2 2 ) ( u h t t 0 2 + s B h t t 0 2 ) + c ( u h t 1 2 + s B h t 1 2 ) 2 .

Now, multiplying by σ 2 ( t ) , then integrating with respect to 𝑡 and using Lemmas 3.53.6, we can get (3.31), along with the following negative-norm estimates by means of (3.33)–(3.34) and (3.1)–(3.2):

u h t t t - 2 ν u h t t 0 + c f t t 0 , Ω + c u h t t 0 u h 1 + c u h t 0 u h t 1 + c B h t t 0 B h 1 + c B h t 0 B h t 1 ,
B h t t t - 2 μ B h t t 0 + c u h t t 0 B h 1 + c u h 1 B h t t 0 + c u h t 0 B h t 1 ,
u h t t t - 1 ν u h t t 1 + c f t t 0 , Ω + c u h t t 1 u h 1 + c u h t 1 u h t 1 + c B h t t 1 B h 1 + c B h t 1 B h t 1 ,
B h t t t - 1 μ B h t t 1 + c u h t t 1 B h 1 + c u h 1 B h t t 1 + c u h t 1 B h t 1 .
Bound (3.32) can be obtained directly from (3.18)–(3.19), (3.1)–(3.2) and Assumption (A3) as follows:
ν u h t 2 f t 0 , Ω + u h t t 0 + c ( u h t ) u h 0 , Ω + c ( u h ) u h t 0 , Ω + c B h t × ( × B h ) 0 , Ω + c B h × ( × B h t ) 0 , Ω f t 0 , Ω + u h t t 0 + c u h t 1 u h 2 + c B h t 1 B h 2 ,
p h t 0 , Ω c u h t 1 + c f t 0 , Ω + c u h t t 0 + c u h t 1 u h 2 + c B h t 1 B h 2 ,
μ B h t 2 c B h t t 0 + c × ( u h t × B h ) 0 , Ω + c × ( u h × B h t ) 0 , Ω c B h t t 0 + c u h t 1 B h 2 + c u h 2 B h t 1 .

Lemma 3.8

Under Assumptions (A0)(A3), the solution ( u h ( t ) , p h ( t ) , B h ( t ) ) of the discrete problem (2.1)–(2.2) satisfies the estimates

(3.36) σ 3 ( t ) [ u h t t ( t ) 1 2 + s B h t t ( t ) 1 2 ] + 0 t σ 3 ( t ) [ ν A h u h t t ( s ) 0 , Ω 2 + s μ A 2 h B h t t ( s ) 0 , Ω 2 ] d s κ ,
(3.37) 0 t σ 3 ( t ) [ u h t t t ( s ) 0 2 + B h t t t ( s ) 0 2 + - ν Δ h u h t t ( s ) + h p h t t ( s ) 0 , Ω 2 ] d s κ .

Proof

Taking the sum of (3.33) with ( v h , q h ) = ( A h u h t t , 0 ) and (3.34) with C h = s A 2 h B h t t , we obtain

(3.38) 1 2 d d t u h t t 1 2 + ν A h u h t t 0 , Ω 2 + s 2 d d t B h t t 1 2 + s μ A 2 h B h t t 0 , Ω 2 + b ( u h t t , u h , A h u h t t ) + 2 b ( u h t , u h t , A h u h t t ) + b ( u h , u h t t , A h u h t t ) + s d ( A h u h t t , B h t t , B h ) + 2 s d ( A h u h t t , B h t , B h t ) + s d ( A h u h t t , B h , B h t t ) - s d ( u h t t , B h , A 2 h B h t t ) - 2 s d ( u h t , B h t , A 2 h B h t t ) - s d ( u h , B h t t , A 2 h B h t t ) = ν 16 A h u h t t 0 , Ω 2 + 4 ν f t t 0 , Ω 2 .

Using (3.1)–(3.2), we can bound all the trilinear terms as follows:

| b ( u h t t , u h , A h u h t t ) | + | b ( u h , u h t t , A h u h t t ) | c 0 u h 2 u h t t 1 A h u h t t 0 , Ω ν 16 A h u t t 0 , Ω 2 + 4 ν c 0 2 u h 2 2 u h t t 1 2 ,
2 | b ( u h t , u h t , A h u h t t ) | c 0 u h t 1 A h u h t 0 , Ω A h u h t t 0 , Ω ν 16 A h u h t t 0 , Ω 2 + 4 ν c 0 2 u h t 1 2 A h u h t 0 , Ω 2 ,
s | d ( A h u h t t , B h t t , B h ) | + s | d ( A h u h t t , B h , B h t t ) | s c 0 A h u h t t 0 , Ω B h 2 B h t t 1 ν 16 A h u h t t 0 , Ω 2 + 4 ν s 2 c 0 2 B h 2 2 B h t t 1 2 ,
2 s | d ( A h u h t t , B h t , B h t ) | s c 0 A h u h t t 0 , Ω A 2 h B h t 0 , Ω B h t 1 ν 16 A h u h t t 0 , Ω 2 + 4 ν s 2 c 0 2 A 2 h B h t 0 , Ω 2 B h t 1 2 ,
s | d ( u h , B h t t , A 2 h B h t t ) | + s | d ( u h t t , B h , A 2 h B h t t ) | s c 0 ( u h t t 1 B h 2 + B h t t 1 u h 2 ) A 2 h B h t t 0 , Ω s μ 8 A 2 h B h t t 0 , Ω 2 + 4 μ s c 0 2 ( u h t t 1 2 B h 2 2 + B h t t 1 2 u h 2 2 ) ,
2 s | d ( u h t , B h t , A 2 h B h t t ) | s c 0 A h u h t 0 , Ω B h t 1 A 2 h B h t t 0 , Ω s μ 16 A 2 h B h t t 0 , Ω 2 + 4 μ s c 0 2 A h u h t 0 , Ω 2 B h t 1 2 .
Combining all the above estimates with (3.38) gives

d d t ( u h t t 1 2 + s B h t t 1 2 ) + ν A h u h t t 0 , Ω 2 + s μ A 2 h B h t t 0 , Ω 2 c f t t 0 , Ω 2 + c ( μ + B h 2 2 + u h 2 2 ) ( u h t t 1 2 + s B h t t 1 2 ) + c ( A h u h t 0 , Ω 2 + A 2 h B h t 0 , Ω 2 ) ( u h t 1 2 + s B h t 1 2 ) .

Then, multiplying both sides by σ 2 ( t ) , integrating with respect to 𝑡 and using Lemmas 3.53.7, we get (3.36). Similarly, we can derive (3.37) by using (3.36) and the following bounds from (3.33)–(3.34):

u h t t t 0 ν A h u h t t 0 , Ω + f t t 0 , Ω + c ( u h t t ) u h 0 , Ω + c ( u h ) u h t t 0 , Ω + c ( u h t ) u h t 0 , Ω + c B h t t × ( × B h ) 0 , Ω + c B h × ( × B h t t ) 0 , Ω + c B h t × ( × B h t ) 0 , Ω f t t 0 , Ω + ν A h u h t t 0 + c u h t t 1 u h 2 + c B h t t 1 B h 2 + c A h u h t 0 , Ω u h t 1 + c A 2 h B h t 0 , Ω B h t 1 ,
- ν Δ h u h t t + h p h t t 0 , Ω u h t t t 0 + f t t 0 , Ω + c u h t t 1 u h 2 + c B h t t 1 B h 2 + c A h u h t 0 , Ω u h t 1 + c A 2 h B h t 0 , Ω B h t 1 ,
B h t t t 0 μ A 2 h B h t t 0 , Ω + μ B h t t 0 + c × ( u h t t × B h ) 0 , Ω + c × ( u h × B h t t ) 0 , Ω + c × ( u h t × B h t ) 0 , Ω μ A 2 h B h t t 0 , Ω + μ B h t t 0 + c u h t t 1 B h 2 + c u h 2 B h t t 1 + c A h u h t 0 , Ω B h t 1 .

For the error estimates of the fully discrete finite element solutions in the next section, we now introduce some Gronwall lemmas (see [19]).

Lemma 3.9

For constant C > 0 and the positive sequences a n , b n , c n , d n satisfying

a m + τ n = 1 m b n τ n = 0 m - 1 d n a n τ + τ n = 0 m - 1 c n + C ,

the following Gronwall inequality holds:

a m + τ n = 1 m b n exp ( τ n = 0 m - 1 d n ) ( τ n = 0 m - 1 c n + C ) .

Lemma 3.10

For constant C > 0 and the positive sequences a n , b n , c n , d n satisfying

a m + τ n = 1 m b n τ n = 0 m d n a n τ + τ n = 0 m c n + C ,

with d n τ 1 2 , the following Gronwall inequality holds:

a m + τ n = 1 m b n exp ( 2 τ n = 0 m d n ) ( τ n = 0 m c n + C ) .

4 Fully Discrete Finite Element Method with the Crank–Nicolson/Adams–Bashforth Scheme

In this section, we first discuss the time discretization of the semi-discrete finite element system (2.1)–(2.2) to get our interested fully discrete finite element scheme to the MHD system system (1.4)–(1.5). We start with the partition of the time interval [ 0 , T ] and the triangulation of the physical domain Ω. We divide the time interval [ 0 , T ] into 𝑁 equally spaced subintervals using the nodal points

0 = t 0 < t 1 < t 2 < < t N = T ,

where t n = n τ for n = 0 , 1 , , N and τ = T N . For any continuous function f ( t ) or any discrete continuous function u ¯ h ( t ) X h in time, we shall use the notation

u ¯ h n = 1 2 ( u h n + u h n - 1 ) , f ¯ ( t n ) = 1 2 ( f ( t n ) + f ( t n - 1 ) ) , d t u h n = u h n - u h n - 1 τ ,

and all other subsequent notation for the time and space discretizations as well as the finite element spaces are carried over from the previous section.

We shall use the implicit second-order Crank–Nicolson scheme to handle the linear terms in system (2.1)–(2.2) and the second-order Adams–Bashforth scheme to take care of the nonlinear term. Since the Crank–Nicolson/Adams–Bashforth scheme involve three levels in times, we first define

( u h 0 , B h 0 ) = ( u h ( 0 ) , B h ( 0 ) ) and ( u h 1 , p h 1 , B h 1 ) X h × M h × W h

to solve the following Euler-backward system for all ( v h , q h , C h ) X h × M h × W h :

(4.1) ( d t u h 1 , v h ) Ω + ν ( u h 1 , v h ) Ω - ( v h , p h 1 ) Ω + ( u h 1 , q h ) Ω     + b ( u h 0 , u h 0 , v h ) + s d ( v h , B h 0 , B h 0 ) = ( f ( t 1 ) , v h ) ,
(4.2) ( d t B h 1 , C h ) Ω + μ ( × B h 1 , × C h ) Ω + μ ( B h 1 , C h ) Ω - d ( u h 0 , B h 0 , C h ) = 0 .
Then we can recursively define the finite element solutions ( u h n , p h n , B h n ) X h × M h × W h for n = 2 , , N by the system
(4.3) ( d t u h n , v h ) Ω + ν ( u ¯ h n , v h ) Ω - ( v h , p h n ) Ω + ( u h n , q h ) Ω + 3 2 b ( u h n - 1 , u h n - 1 , v h ) - 1 2 b ( u h n - 2 , u h n - 2 , v h ) + 3 2 s d ( v h , B h n - 1 , B h n - 1 ) - 1 2 s d ( v h , B h n - 2 , B h n - 2 ) = ( f ¯ ( t n ) , v h ) Ω ,
(4.4) ( d t B h n , C h ) Ω + μ ( × B ¯ h n , × C h ) Ω + μ ( B ¯ h n , C h ) Ω - 3 2 d ( u h n - 1 , B h n - 1 , C h ) + 1 2 d ( u h n - 2 , B h n - 2 , C h ) = 0 .

For the subsequent error estimates of the fully discrete finite element solution, we introduce the notation

e n = u h ( t n ) - u h n , ε n = B h ( t n ) - B h n , η n = p ¯ h ( t n ) - p h n , n = 1 , , N .

We first study the approximation errors of the initial values ( u h 1 , p h 1 , B h 1 ) X h × M h × W h defined by (4.1)–(4.2).

Lemma 4.1

Under Assumptions (A0)(A3), for τ 1 4 and α = - 2 , - 1 , 0 , 1 , we have

(4.5) e 1 α 2 + d t e 1 α 2 τ 2 + ν e 1 α + 1 2 τ + ε 1 α 2 + d t ε 1 α 2 τ 2 + μ ε 1 α + 1 2 τ κ 1 τ 2 - α , η 1 0 2 κ 1 .

Proof

We first integrate (2.1) with ( v h , q h ) X h × M h and (2.2) with C h W h from t 0 to t 1 to obtain

(4.6) ( d t u h ( t 1 ) , v h ) Ω + 1 τ t 0 t 1 ( - ν Δ h u h ( t ) + h p h ( t ) , v h ) Ω d t + ( u h ( t 1 ) , q h ) Ω + 1 τ t 0 t 1 b ( u h ( t ) , u h ( t ) , v h ) d t + s 1 τ t 0 t 1 d ( v h , B h ( t ) , B h ( t ) ) d t = 1 τ t 0 t 1 ( f ( t ) , v h ) d t ,
(4.7) ( d t B h ( t 1 ) , C h ) Ω + μ 1 τ t 0 t 1 [ ( × B h ( t ) , × C h ) Ω + ( B h ( t ) , C h ) Ω ] d t - 1 τ t 0 t 1 d ( u h ( t ) , B h ( t ) , C h ) d t = 0 .
To derive the error equations of e 1 and ε 1 , we subtract (4.1) with ( v h , q h ) X h × M h and (4.2) with C h W 0 h from (4.6) and (4.7), respectively, and then use integration by parts to deduce
(4.8) ( d t e 1 , v h ) Ω + ν ( e 1 , v h ) Ω - ( v h , η 1 ) Ω + ( e 1 , q h ) Ω = ( E 1 , v h ) Ω ,
(4.9) ( d t ε 1 , C h ) Ω + μ ( × ε 1 , × C h ) Ω + μ ( ε 1 , C h ) Ω = ( F 1 , C h ) Ω ,
where
(4.10) ( E 1 , v h ) Ω = - 1 τ t 0 t 1 ( t - t 0 ) ( f t ( t ) , v h ) Ω d t + 1 τ t 0 t 1 ( t - t 0 ) ( - ν Δ h u h t ( t ) + h p h t , v h ) Ω d t + 1 τ t 0 t 1 ( t - t 1 ) b t ( u h ( t ) , u h ( t ) , v h ) d t + s 1 τ t 0 t 1 ( t - t 1 ) d t ( v h , B h ( t ) , B h ( t ) ) d t ,
(4.11) ( F 1 , C h ) Ω = μ 1 τ t 0 t 1 ( t - t 0 ) [ ( × B h t ( t ) , × C h ) Ω + ( B h t ( t ) , C h ) Ω ] d t - 1 τ t 0 t 1 ( t - t 1 ) d t ( u h ( t ) , B h ( t ) , C h ) d t .
To continue the estimate, we introduce the L 2 -orthogonal projection P 0 h : L 2 ( Ω ) 3 X h defined by

( P 0 h v , v h ) = ( v , v h ) Ω for all v L 2 ( Ω ) 3 , v h X h .

Then we can use (4.10)–(4.11) and (3.1)–(3.2) to bound three weighted norms of the truncation error E 1 by

P h E 1 0 P 0 h E 1 0 , Ω = sup v h X h ( E 1 , v h ) Ω v h 0 c sup 0 t t 1 [ f ( t ) 0 , Ω + - ν Δ h u h ( t ) + h p h ( t ) 0 + A h u h ( t ) 0 u h ( t ) 1 ] + c sup 0 t t 1 [ B h ( t ) 1 B h ( t ) 2 ] κ ,
A h - 1 2 P h E 1 0 , Ω = sup v h V h ( E 1 , v h ) Ω v h 1 c sup 0 t t 1 [ τ f t ( t ) 0 , Ω + τ 1 2 σ 1 2 ( t ) u h t ( t ) 1 + τ A h u h ( t ) 0 , Ω u h t ( t ) 0 ] + c sup 0 t t 1 [ τ A 2 h B h ( t ) 0 , Ω B h t ( t ) 0 ] κ τ 1 2 ,
(4.12) A h - 1 P h E 1 0 , Ω = sup v h V h ( E 1 , v h ) Ω A h v h 0 c sup 0 t t 1 [ τ f t ( t ) 0 , Ω + ν τ u h t ( t ) 0 + τ u h ( t ) 1 u h t ( t ) 0 ] + c sup 0 t t 1 [ B h ( t ) 1 B h t ( t ) 0 ] κ τ ,
and to bound three weighted norms of the truncation error F 1 by
R 0 h F 1 0 , Ω = sup C h W h ( F 1 , C h ) Ω C h 0 c sup 0 t t 1 [ A 2 h B h ( t ) 0 , Ω + A 2 h B h ( t ) 0 , Ω u h ( t ) 1 ] κ ,
A 2 h - 1 2 R 0 h F 1 0 , Ω = sup C h W 0 h ( F 1 , C h ) Ω A 2 h 1 2 C h 0 , Ω c τ 1 2 σ 1 2 ( t ) B h t ( t ) 1 + τ A h u h ( t ) 0 , Ω B h t ( t ) 0 ] + c sup 0 t t 1 [ τ A 2 h B h ( t ) 0 , Ω u h t ( t ) 0 + τ A h u h ( t ) 0 , Ω B h t ( t ) 0 ] κ τ 1 2 ,
(4.13) A 2 h - 1 R 0 h F 1 0 , Ω = sup C h W h ( F 1 , C h ) Ω A 2 h C h 0 , Ω c sup 0 t t 1 [ τ B h t ( t ) 0 + τ u h ( t ) 1 B h t ( t ) 0 + τ u h t ( t ) 0 B h ( t ) 1 ] κ τ .
To further our estimates, we recall some smooth properties of the semi-discrete solution ( u h ( t ) , p h ( t ) , B h ( t ) ) to (2.1)–(2.2) (cf. Lemmas 3.43.8):

(4.14) u h ( t ) 2 2 + B h ( t ) 2 2 + - ν Δ h u h ( t ) + h p h ( t ) 0 , Ω 2 κ 0 , σ 2 ( t ) p h t 0 , Ω 2 κ 0 , σ r ( t ) ( u h t ( t ) r 2 + B h t ( t ) r 2 ) κ 0 , r = 0 , 1 , 2 , σ r + 2 ( t ) ( u h t t ( t ) r 2 + B h t t ( t ) r 2 ) κ 0 , r = - 1 , 0 , 1 , 0 t σ r ( s ) ( u h t ( s ) r + 1 2 + B h t ( s ) r + 1 2 ) d s κ 0 , r = 0 , 1 , 0 t σ r + 1 ( s ) ( u h t t ( s ) r 2 + B h t t r 2 ) d s κ 0 , r = - 1 , 0 , 1 , 2 , 0 t σ r + 2 ( s ) ( u h t t t ( s ) r - 1 2 + B h t t t ( s ) r - 1 ) d s κ 0 , r = - 1 , 0 , 1 , 0 t [ σ 3 ( s ) - ν Δ h u h t t ( s ) + h p h t t ( s ) 0 , Ω 2 + σ ( s ) - ν Δ h u h t ( s ) + h p h t ( s ) 0 , Ω 2 ] d s κ 0 .

With the above preparations and for α = - 1 , 0 , 1 , we now take v h = 2 A h α e 1 τ V h , q h = 0 in (4.8) and C h = 2 A 2 h α ε 1 τ in (4.9), respectively. Then, using (4.12), (4.13) and (4.14), we can deduce

e 1 α 2 + d t e 1 α 2 τ 2 + ν e 1 α + 1 2 τ ν - 1 A h α - 1 2 P h E 1 0 , Ω 2 τ κ τ 2 - α , ε 1 α 2 + d t ε 1 α 2 τ 2 + μ ε 1 α + 1 2 τ - 2 μ ε 1 α 2 τ μ - 1 A 2 h α - 1 2 R 0 h F 1 0 , Ω 2 τ κ τ 2 - α .

To have the desired estimates of the errors in negative-norm, we take v h = 2 A h - 2 e 1 τ V h , q h = 0 in (4.8) and C h = 2 A 2 h - 2 ε 1 τ W h in (4.9), then use (4.14) to obtain

e 1 - 2 2 + d t e 1 - 2 2 τ 2 + ν e 1 - 1 2 τ 4 A h - 1 P h E 1 0 2 τ 2 κ τ 4 , ε 1 - 2 2 + d t ε 1 - 2 2 τ 2 + μ ε 1 - 1 2 τ - 2 μ ε - 2 2 τ 2 μ - 1 A 2 h - 1 R 0 h F 1 0 , Ω 2 τ 2 κ τ 4 ,

Combining these above estimates, we can see the first desired estimate in (4.5). The second estimate in (4.5) can be achieved by using (3.1)–(3.2) and Assumption (A3):

η 1 0 c d t e 1 0 + c e 1 1 + c P 0 h E 1 0 κ .

5 Error Estimates Part I

In this section, we establish the equations of the errors e n = u h ( t n ) - u h n , η n = 1 τ t n - 1 t n p h ( t ) d t - p h n and ε n = B h ( t n ) - B h n and then deduce the bounds of the truncation errors E n and F n for n = 2 , , N . The estimates of these errors in H 1 - and L 2 -norm will be developed in the next section. For simplicity, we always assume that v h X h and q h M h and C h W h in this section.

We start by integrating (2.1) and (2.2) from t n - 1 to t n , respectively, to have

(5.1) ( d t u h ( t n ) , v h ) Ω + 1 τ t n - 1 t n ( - ν Δ h u h ( t ) + h p h ( t ) , v h ) Ω d t + ( u h ( t n ) , q h ) Ω + 1 τ t n - 1 t n b ( u h ( t ) , u h ( t ) , v h ) d t + s 1 τ t n - 1 t n d ( v h , B h ( t ) , B h ( t ) ) d t = 1 τ t n - 1 t n ( f ( t ) , v h ) Ω d t ,
(5.2) ( d t B h ( t n ) , C h ) Ω + μ τ t n - 1 t n [ ( × B h ( t ) , × C h ) Ω + ( B h ( t ) , C h ) Ω ] d t - 1 τ t n - 1 t n d ( u h ( t ) , B h ( t ) , C h ) d t = 0 .
Subtracting (3.3) and (3.4) from (5.1) and (5.2), respectively, and using the formulas

1 τ t n - 1 t n ϕ ( t ) d t - ϕ ¯ ( t n ) = - 1 2 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) ϕ t t ( t ) d t , ϕ ¯ ( t n ) - 3 2 ϕ ( t n - 1 ) + 1 2 ϕ ( t n - 2 ) = - 1 2 t n - 1 t n ( t - t n ) ϕ t t ( t ) d t + 1 2 t n - 2 t n - 1 ( t - t n - 2 ) ϕ t t ( t ) d t

for all ϕ H 2 ( t n - 1 , t n ) , we can derive

(5.3) ( d t e n , v h ) Ω + ν ( e ¯ n , v h ) Ω - ( v h , η n ) Ω + ( e n , q h ) Ω + 3 2 b ( e n - 1 , u h ( t n - 1 ) , v h ) + 3 2 b ( u h n - 1 , e n - 1 , v h ) - 1 2 b ( e n - 2 , u h ( t n - 2 ) , v h ) - 1 2 b ( u h n - 2 , e n - 2 , v h ) + 3 2 d ( v h , ε n - 1 , B h ( t n - 1 ) ) + 3 2 b ( v h , B h n - 1 , ε n - 1 ) - 1 2 d ( v h , ε n - 2 , B h ( t n - 2 ) ) - 1 2 b ( v h , B h n - 2 , ε n - 2 , v h ) = ( E n , v h ) Ω ,
(5.4) ( d t ε n , C h ) Ω + μ ( × ε ¯ n , × C h ) Ω + μ ( ε ¯ n , C h ) Ω - 3 2 d ( e n - 1 , B h ( t n - 1 ) , C h ) - 3 2 d ( u h n - 1 , ε n - 1 , C h ) + 1 2 d ( e n - 2 , B h ( t n - 2 ) , C h ) + 1 2 b ( u h n - 2 , ε n - 2 , C h ) = ( F n , C h ) Ω ,
where the right-hand side of (5.3) is defined by

(5.5) ( E n , v h ) Ω = 1 2 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) ( f t t ( t ) , v h ) Ω d t + 1 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) ( - ν Δ h u h t t ( t ) + h p h t t ( t ) , v h ) Ω d t + 1 2 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) b t t ( u h ( t ) , u h ( t ) , v h ) d t + 1 2 t n - 1 t n ( t - t n ) b t t ( u h ( t ) , u h ( t ) , v h ) d t - 1 2 t n - 2 t n - 1 ( t - t n - 2 ) b t t ( u h ( t ) , u h ( t ) , v h ) d t + 1 2 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) d t t ( v h , B h ( t ) , B h ( t ) ) d t + 1 2 t n - 1 t n ( t - t n ) d t t ( v h , B h ( t ) , B h ( t ) ) d t - 1 2 t n - 2 t n - 1 ( t - t n - 2 ) d t t ( v h , B h ( t ) , B h ( t ) ) d t ,

and the right-hand side of (5.4) is defined by

(5.6) ( F n , C h ) Ω = μ τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) ( × B h t t ( t ) , × C h ) Ω d t + μ τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) ( B h t t ( t ) , C h ) Ω d t - 1 2 τ t n - 1 t n ( t - t n - 1 ) ( t n - t ) d t t ( u h ( t ) , B h ( t ) , C h ) d t - 1 2 t n - 1 t n ( t - t n ) d t t ( u h ( t ) , B h ( t ) , C h ) d t + 1 2 t n - 2 t n - 1 ( t - t n - 2 ) d t t ( u h ( t ) , B h ( t ) , C h ) d t ,

while the three b t t - and d t t -terms in (5.5)–(5.6) are defined by

b t t ( u h ( t ) , u h ( t ) , v h ) = b ( u h t t ( t ) , u h ( t ) , v h ) + b ( u h ( t ) , u h t t ( t ) , v h ) + 2 b ( u h t , u h t , v h ) , d t t ( v h , B h ( t ) , B h ( t ) ) = d ( v h , B h t t ( t ) , B h ( t ) ) + d ( v h , B h ( t ) , B h t t ( t ) ) + 2 b ( v h , B h t , B h t ) , d t t ( u h ( t ) , B h ( t ) , C h ) = d ( u h t t ( t ) , B h ( t ) , C h ) + d ( u h ( t ) , B h t t ( t ) , C h ) + 2 d ( u h t , B h t , C h ) .

We end this section with the bounds of the truncation errors E n and F n for n = 2 , , N .

Lemma 5.1

Under Assumptions (A0)(A3), the truncation errors E n and F n satisfy the bounds

(5.7) τ n = 2 m A h - 3 2 P h E n 0 , Ω 2 κ 2 τ 4 , τ n = 2 m σ i ( t n ) A h - 1 P h E n 0 , Ω 2 κ 2 τ 3 + i , i = 0 , 1 , τ n = 2 n σ i ( t n ) A h - 1 2 P h E h 0 , Ω 2 κ 2 τ 2 + i , i = 0 , 1 , 2 , τ n = 2 m σ i ( t n ) P 0 h E n 0 , Ω 2 κ 2 τ 1 + i , i = 0 , 1 , 2 , 3 ,
(5.8) τ n = 2 m A 1 h - 3 2 R 0 h F n 0 , Ω 2 κ 2 τ 4 , τ n = 2 m σ i ( t n ) A 1 h - 1 R 0 h F n 0 , Ω 2 κ 2 τ 3 + i , i = 0 , 1 , τ n = 2 n σ i ( t n ) A 1 h - 1 2 R 0 h F h 0 , Ω 2 κ 2 τ 2 + i , i = 0 , 1 , 2 , τ n = 2 m σ i ( t n ) R 0 h F n 0 , Ω 2 κ 2 τ 1 + i , i = 0 , 1 , 2 , 3 ,
for all 2 m N .

Proof

Using Lemmas 3.23.3, (3.1)–(3.2), we can derive the weighted norms of E n from (5.5) as follows:

A h - 3 2 P h E n 0 , Ω = sup v h V h | ( E n , v h ) Ω | A h 3 2 v h 0 , Ω c τ 3 2 ( t n - 1 t n f t t ( t ) 0 , Ω 2 d t ) 1 2 + c τ 3 2 ( t n - 1 t n u h t t ( t ) - 1 2 d t ) 1 2 + c τ 3 2 ( t n - 2 t n [ u h t ( t ) 0 2 u h t ( t ) 1 2 + A h u h ( t ) 0 , Ω 2 u h t t ( t ) - 1 2 ] d t ) 1 2 + c τ 3 2 ( t n - 2 t n [ B h t ( t ) 0 2 B h t ( t ) 1 2 + A h u h ( t ) 0 , Ω 2 B h t t ( t ) - 1 2 ] d t ) 1 2 ,
A h - 1 P h E n 0 , Ω = sup v h V h | ( E n , v h ) Ω | A h v h 0 , Ω c τ 3 2 ( t n - 1 t n f t t ( t ) 0 , Ω 2 d t ) 1 2 + c τ ( t n - 1 t n ( t - t n - 1 ) u h t t ( t ) 0 2 d t ) 1 2 + c τ 3 2 ( t n - 2 t n [ A h u h ( t ) 0 , Ω 2 u h t t ( t ) - 1 2 + u h t 1 2 u h t 0 2 ] d t ) 1 2 + c τ 3 2 ( t n - 2 t n [ A 2 h B h ( t ) 0 , Ω 2 B h t t ( t ) - 1 2 + B h t ( t ) 1 2 B h t ( t ) 0 2 ] d t ) 1 2 .
Continuing with similar arguments, we can further derive

A h - 1 2 P h E n 0 , Ω = sup v h V h | ( E n , v h ) Ω | v h 1 c τ 3 2 ( t n - 1 t n f t t ( t ) 0 , Ω 2 d t ) 1 2 + c τ 1 2 ( t n - 1 t n ( t - t n - 1 ) 2 u h t t ( t ) 1 2 d t ) 1 2 + c τ ( t n - 2 t n ( t - t n - 2 ) [ A h u h ( t ) 0 , Ω 2 u h t t ( t ) 0 2 + u h t ( t ) 1 2 u h t ( t ) 1 2 ] d t ) 1 2 + c τ ( t n - 2 t n ( t - t n - 2 ) [ A 2 h B h ( t ) 0 , Ω 2 B h t t ( t ) 0 2 + B h t ( t ) 1 2 B h t ( t ) 1 2 ] d t ) 1 2 ,

and

P h E n 0 P 0 h E n 0 , Ω = sup v h X h | ( E n , v h ) Ω | v h 0 c τ 3 2 ( t n - 1 t n f t t ( t ) 0 , Ω 2 d t ) 1 2 + c ( t n - 1 t n ( t n - t ) ( t - t n - 1 ) 2 - ν Δ h u h t t ( t ) + h p h t t ( t ) 0 , Ω 2 d t ) 1 2 + c τ 1 2 ( t n - 1 t n ( t n - t ) 2 [ A h u h ( t ) 0 , Ω 2 u h t t ( t ) 1 2 + u h t ( t ) 1 2 A h u h t ( t ) 0 , Ω 2 ] d t ) 1 2 + c τ 1 2 ( t n - 2 t n - 1 ( t - t n - 2 ) 2 ( A h u h ( t ) 0 , Ω 2 u h t t ( t ) 1 2 + u h t 1 2 A h u h t ( t ) 0 , Ω 2 ) d t ) 1 2 + c τ 1 2 ( t n - 1 t n ( t n - t ) 2 [ A 2 h B h ( t ) 0 , Ω 2 B h t t ( t ) 1 2 + B h t ( t ) 1 2 A 2 h B h t ( t ) 0 , Ω 2 ] d t ) 1 2 + c τ 1 2 ( t n - 2 t n - 1 ( t - t n - 2 ) 2 ( A 2 h B h ( t ) 0 , Ω 2 B h t t ( t ) 1 2 + B h t 1 2 A 2 h B h t ( t ) 0 , Ω 2 ) d t ) 1 2 .

Combining all the above estimates with (4.14), we readily get the desired estimate (5.7). Similarly, by using Lemmas 3.23.3 and (3.1)–(3.2), we can establish (5.8) from (5.6). ∎

6 Error Estimates Part II

With the preparations from the previous section, we can now establish the H 1 - and L 2 -estimates of the errors e n = u h ( t n ) - u h n , ε n = B h ( t n ) - B h n and the L 2 -bound of the error η n = p ¯ h ( t n ) - p h n for all 1 n N .

First, for α = - 2 , - 1 , 0 , 1 , we add up equation (5.3) with v h = 2 A h α e n τ V h and q h = 0 and equation (5.4) with C h = 2 A 2 h α ε n τ W h to deduce

(6.1) e n α 2 - e n - 1 α 2 + d t e n α 2 τ 2 + ν 2 + ( e n α + 1 2 - e n - 1 α + 1 2 + 4 e ¯ n α + 1 2 ) τ + ε n α 2 - ε n - 1 α 2 + d t ε n α 2 τ 2 + μ 2 ( ε n α + 1 2 - ε n - 1 α + 1 2 + 4 ε ¯ n α + 1 2 ) τ + i = 1 12 K i 2 τ ( E n , A h α e ¯ n + 1 2 A h α d t e n τ ) Ω + 2 τ ( F n , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) Ω ,

where K 1 , K 2 , , K 12 are defined by

(6.2) K 1 = : 3 b ( e n - 1 , u h ( t n - 1 ) , A h α e n ) τ + 3 b ( u h ( t n - 1 ) , e n - 1 , A h α e n ) τ , K 2 = : - b ( e n - 2 , u h ( t n - 2 ) , A h α e n ) τ - b ( u h ( t n - 2 ) , e n - 2 , A h α e n ) τ , K 3 1 + K 3 2 = : - 2 b ( e ¯ n - 1 , e ¯ n - 1 , A h α e n ) τ + 1 2 b ( d t e n - 1 , d t e n - 1 , A h α e n ) τ 3 , K 4 = : - 2 b ( e ¯ n - 1 , d t e n - 1 , A h α e n ) τ 2 - 2 b ( d t e n - 1 , e ¯ n - 1 , A h α e n ) τ 2 , K 5 = : 3 s d ( A h α e n , ε n - 1 , B h ( t n - 1 ) ) τ + 3 s d ( A h α e n , B h ( t n - 1 ) , ε n - 1 ) τ , K 6 = : - s d ( A h α e n , ε n - 2 , B h ( t n - 2 ) ) τ - s d ( A h α e n , B h ( t n - 2 ) , ε n - 2 ) τ , K 7 1 + K 7 2 = : - 2 s d ( A h α e n , ε ¯ n - 1 , ε ¯ n - 1 ) τ + 1 2 s d ( A h α e n , d t ε n - 1 , d t ε n - 1 ) τ 3 , K 8 = : - 2 s d ( A h α e n , ε ¯ n - 1 , d t ε n - 1 ) τ 2 - 2 s d ( A h α e n , d t ε n - 1 , ε ¯ n - 1 ) τ 2 , K 9 = : - 3 d ( e n - 1 , B h ( t n - 1 ) , A 2 h α ε n ) τ - 3 d ( u h ( t n - 1 ) , ε n - 1 , A 2 h α ε n ) τ , K 10 = : d ( e n - 2 , B h ( t n - 2 ) , A 2 h α ε n ) τ + d ( u h ( t n - 2 ) , ε n - 2 , A 2 h α ε n ) τ , K 11 1 + K 11 2 = : 2 d ( e ¯ n - 1 , ε ¯ n - 1 , A 2 h α ε n ) τ - 1 2 d ( d t e n - 1 , d t ε n - 1 , A 2 h α ε n ) τ 3 , K 12 = : 2 d ( e ¯ n - 1 , d t ε n - 1 , A 2 h α ε n ) τ 2 + 2 d ( d t e n - 1 , ε ¯ n - 1 , A 2 h α ε n ) τ 2 .

We will divide the entire analysis of the errors e n and ε n in several lemmas for different 𝛼-norm.

Lemma 6.1

Under Assumptions (A0)(A3) and for 𝜏 satisfying

(6.3) 64 c 0 2 κ 4 2 τ κ 2 , 64 c 0 2 κ 4 2 T 1 2 ( 1 + ν - 3 2 + μ - 3 2 ) τ κ 1 , τ 1 4 μ ,

there holds that

(6.4) e m α 2 + ν 2 e m α + 1 2 τ + τ n = 1 m ( 1 2 d t e n α 2 τ + ν e ¯ n α + 1 2 ) + ε m α 2 + μ 2 ε m α + 1 2 τ + τ n = 1 m ( 1 2 d t ε n α 2 τ + μ ε ¯ n α + 1 2 ) κ 4 τ 2 - α

for α = - 1 , 0 , 1 and 1 m N , where

d n = 48 c 0 2 ( A h u h ( t n ) 0 , Ω 2 + A 2 h B h ( t n ) 0 , Ω 2 ) ,
(6.5) κ 3 = max 1 n N - 1 { d n } , κ 4 = e κ 3 T [ 3 κ 1 + 18 ( 1 + ν - 1 + μ - 1 ) κ 2 ] .

Proof

For the desired error estimate (6.4), we will bound all the terms K i for 1 i 12 defined in (6.2) and also frequently use the fact that e n = e ¯ n + 1 2 τ d t e n and ε n = ε ¯ n + 1 2 τ d t ε n .

For K 1 , K 2 , K 5 and K 6 and α = - 1 , 0 , 1 , we get readily, from (3.1) and Lemmas 3.13.3,

| K 1 | 3 | b ( e n - 1 , u h ( t n - 1 ) , A h α e ¯ n + 1 2 τ A h α d t e n ) | τ + 3 | b ( u h ( t n - 1 ) , e n - 1 , A h α e ¯ n + 1 2 τ A h α d t e n ) | τ ν c 0 A h u h ( t n - 1 ) 0 , Ω ( e n - 1 α e ¯ n α + 1 + 1 2 τ e n - 1 α + 1 d t e n α ) τ 1 32 d t e n α 2 τ 2 + ν 32 e ¯ n α + 1 2 τ + 8 c 0 2 A h u h ( t n - 1 ) 0 , Ω 2 ( e n - 1 α 2 + ν 2 e n - 1 α + 1 2 τ ) τ ,
| K 2 | | b ( e n - 2 , u h ( t n - 2 ) , A h α e ¯ n + 1 2 τ A h α d t e n ) | τ + | b ( u h ( t n - 2 ) , e n - 2 , A h α e ¯ n + 1 2 τ A h α d t e n ) | τ 1 32 d t e n α 2 τ 2 + ν 32 e ¯ n α + 1 2 τ + 8 c 0 2 A h u h ( t n - 2 ) 0 , Ω 2 ( e n - 2 α 2 + ν 2 e n - 2 α + 1 2 τ ) τ ,
| K 5 | 3 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , ε n - 1 , B h ( t n - 1 ) ) | τ + 3 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , B h ( t n - 1 ) , ε n - 1 ) | τ c 0 A 2 h B h ( t n - 1 ) 0 , Ω ( ν ε n - 1 α e ¯ n α + 1 + μ 2 ε n - 1 α + 1 d t e n α τ ) τ 1 32 d t e n α 2 τ 2 + ν 32 e ¯ n α + 1 2 τ + 8 c 0 2 A 2 h B h ( t n - 1 ) 0 , Ω 2 ( ε n - 1 α 2 + μ 2 ε n - 1 α + 1 2 τ ) τ ,
| K 6 | s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , ε n - 2 , B h ( t n - 2 ) ) | τ + s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , B h ( t n - 2 ) , ε n - 2 ) | τ 1 32 d t e n α 2 τ 2 + ν 32 e ¯ n α + 1 2 τ + 8 c 0 2 A 2 h B h ( t n - 2 ) 0 , Ω 2 ( ε n - 2 α 2 + μ 2 ε n - 2 α + 1 2 τ ) τ .
For K 9 , K 10 , K 3 1 and K 4 and α = - 1 , 0 , 1 , we can estimate, by means of Lemmas 3.23.3,
| K 9 | 3 | d ( e n - 1 , B h ( t n - 1 ) , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ + 3 | d ( u h ( t n - 1 ) , ε n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ c 0 A 2 h B h ( t n - 1 ) 0 , Ω ( μ e n - 1 α ε ¯ n α + 1 + ν 2 e n - 1 α + 1 d t ε n α τ ) τ + c 0 A h u h ( t n - 1 ) 0 , Ω μ ( ε n - 1 α ε ¯ n α + 1 + 1 2 ε n - 1 α + 1 d t ε n α τ ) τ 1 16 d t ε n α 2 τ 2 + μ 16 ε ¯ n α + 1 2 τ + 8 c 0 2 A 2 h B h ( t n - 1 ) 0 , Ω 2 ( e n - 1 α 2 + ν 2 e n - 1 α + 1 2 τ ) + 8 c 0 2 A h u h ( t n - 1 ) 0 , Ω 2 ( ε n - 1 α 2 + μ 2 ε n - 1 α + 1 2 τ ) τ ,
| K 10 | | d ( e n - 2 , B h ( t n - 2 ) , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ + | d ( u h ( t n - 2 ) , ε n - 2 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ 1 16 d t ε n α 2 τ 2 + μ 16 ε ¯ n α + 1 2 τ + 8 c 0 2 A 2 h B h ( t n - 2 ) 0 , Ω 2 ( e n - 2 α 2 + ν 2 e n - 2 α + 1 2 τ ) + 8 c 0 2 A h u h ( t n - 2 ) 0 , Ω 2 ( ε n - 2 α 2 + μ 2 ε n - 2 α + 1 2 τ ) τ ,
| K 3 1 | 2 | b ( e ¯ n - 1 , e ¯ n - 1 , A h α e ¯ n + 1 2 A h α d t e n τ ) | τ c 0 ν A h e ¯ n - 1 0 , Ω ( e ¯ n - 1 α e ¯ n α + 1 + 1 2 e ¯ n - 1 α + 1 d t e n α τ ) τ ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A h e ¯ n - 1 0 , Ω 2 ( e ¯ n - 1 α 2 + ν 2 e ¯ n - 1 α + 1 2 τ ) τ ,
| K 4 | 2 | b ( e ¯ n - 1 , d t e n - 1 , A h α e ¯ n + 1 2 A h α d t e n τ ) | τ 2 + 2 | b ( d t e n - 1 , e ¯ n - 1 , A h α e ¯ n + 1 2 A h α d t e n τ ) | τ 2 c 0 A h e ¯ n - 1 0 , Ω ( ν d t e n - 1 α e ¯ n α + 1 + d t e n - 1 α + 1 d t e n α τ ) τ 2 ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A h e ¯ n - 1 0 , Ω 2 ( d t e n - 1 α 2 + d t e n - 1 α + 1 2 τ ) τ 3 .
For K 3 2 with different 𝛼, K 7 and K 8 , we can estimate, by means of Lemmas 3.23.3,
| K 3 2 | 1 2 | b ( d t e n - 1 , d t e n - 1 , A h α e ¯ n + 1 2 A h α d t e n τ ) | τ 3 ( for α = - 1 , 0 ) c 0 A h d t e n - 1 0 , Ω ( ν d t e n - 1 α e ¯ n α + 1 + 1 2 d t e n - 1 α + 1 d t e n α τ ) τ 3 ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A h d t e n - 1 0 , Ω 2 ( d t e n - 1 α 2 + d t e n - 1 α + 1 2 τ ) τ 5 ,
| K 3 2 | 1 2 | b ( d t e n - 1 , d t e n - 1 , A h e ¯ n + 1 2 A h d t e n τ ) | τ 3 ( for α = 1 ) c 0 A h d t e n - 1 0 , Ω ( ν d t e n - 1 1 e ¯ n 2 + 1 2 d t e n - 1 1 1 2 A h d t e n - 1 0 , Ω 1 2 d t e n 1 τ ) τ 3 ν 32 e ¯ n 2 2 τ + 1 32 d t e n 1 2 τ 2 + 8 c 0 2 A h d t e n - 1 0 , Ω 2 ( d t e n - 1 1 2 + A h d t e n - 1 0 , Ω d t e n - 1 1 τ ) τ 5 ,
| K 7 1 | 2 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , ε ¯ n - 1 , ε ¯ n - 1 ) | τ c 0 A 2 h ε ¯ n - 1 0 , Ω ( ν ε ¯ n - 1 α e ¯ n α + 1 + μ 2 ε ¯ n - 1 α + 1 d t e n α τ ) τ ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A 2 h ε ¯ n - 1 0 , Ω 2 ( ε ¯ n - 1 α 2 + μ 2 ε ¯ n - 1 α + 1 2 τ ) τ ,
| K 8 | 2 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , ε ¯ n - 1 , d t ε n - 1 ) | τ 2 + 2 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , d t ε n - 1 , ε ¯ n - 1 ) | τ 2 c 0 A 2 h ε ¯ n - 1 0 , Ω ( ν d t ε n - 1 α e ¯ n α + 1 + d t ε n - 1 α + 1 d t e n α τ ) τ 2 ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A 2 h ε ¯ n - 1 0 , Ω 2 ( d t ε n - 1 α 2 + d t ε n - 1 α + 1 τ ) τ 3 ,
| K 7 2 | 1 2 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , d t ε n - 1 , d t ε n - 1 ) | τ 3 ( for α = - 1 , 0 ) c 0 A 2 h d t ε n - 1 0 , Ω ( ν d t ε n - 1 α e ¯ n α + 1 + d t ε n - 1 α + 1 d t e n α τ ) τ 3 ν 32 e ¯ n α + 1 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A 2 h d t ε n - 1 0 , Ω 2 ( d t ε n - 1 α 2 + d t ε n - 1 α + 1 2 τ ) τ 5 ,
| K 7 2 | 1 2 s | d ( A h α e ¯ n + 1 2 A h α d t e n τ , d t ε n - 1 , d t ε n - 1 ) | τ 3 ( for α = 1 ) s c 0 A 2 h d t ε n - 1 0 , Ω ( ν d t ε n - 1 1 e ¯ n 2 + d t ε n - 1 1 1 2 A 2 h d t ε n - 1 0 , Ω 1 2 d t e n 1 τ ) τ 3 ν 32 e ¯ n 2 2 τ + 1 32 d t e n α 2 τ 2 + 8 c 0 2 A 2 h d t ε n - 1 0 , Ω 2 ( d t ε n - 1 1 2 + A 2 h d t ε n - 1 0 , Ω d t ε n - 1 1 τ ) τ 5 .
For K 11 1 and α = - 1 , 0 , 1 , we get readily, from (3.1) and Lemmas 3.13.3,
| K 11 1 | 2 | d ( e ¯ n - 1 , ε ¯ n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ c 0 μ A h e ¯ n - 1 0 , Ω ( ε ¯ n - 1 α ε ¯ n α + 1 + 1 2 ε ¯ n - 1 α + 1 d t ε n α τ ) τ μ 32 ε ¯ n α + 1 2 τ + 1 32 d t ε n α 2 τ 2 + 8 c 0 2 A h e ¯ n - 1 0 , Ω 2 ( ε ¯ n - 1 α 2 + μ 2 ε ¯ n - 1 α + 1 2 τ ) τ ,
| K 12 | 2 | d ( e ¯ n - 1 , d t ε n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ 2 + 2 | d ( d t e n - 1 , ε ¯ n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ 2 c 0 A h e ¯ n - 1 0 , Ω ( μ d t ε n - 1 α ε ¯ n α + 1 + d t ε n - 1 α + 1 d t ε n α τ ) τ + c 0 A 2 h ε ¯ n - 1 0 , Ω ( μ d t e n - 1 α ε ¯ n α + 1 + d t e n - 1 α + 1 d t ε n α τ ) τ 2 μ 16 ε ¯ n α + 1 2 τ + 1 16 d t ε n α 2 τ 2 + 8 c 0 2 A h e ¯ n - 1 0 , Ω 2 ( d t ε n - 1 α 2 + d t ε n - 1 α + 1 2 τ ) τ 2 + 8 c 0 2 A 2 h ε ¯ n - 1 0 , Ω 2 ( d t e n - 1 α 2 + d t e n - 1 α + 1 2 ) τ ) τ 2 ,
| K 11 2 | 1 2 | d ( d t e n - 1 , d t ε n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ 3 ( for α = - 1 , 0 ) c 0 A h d t e n - 1 0 , Ω ( μ d t ε n - 1 α ε ¯ n α + 1 + d t ε n - 1 α + 1 d t ε n α τ ) τ 3 μ 32 ε ¯ n α + 1 2 τ + 1 32 d t ε n α 2 τ 2 + 8 c 0 2 A h d t e n - 1 0 , Ω 2 ( d t ε n - 1 α 2 + d t ε n - 1 α + 1 2 τ ) τ 5 ,
| K 11 2 | 1 2 | d ( d t e n - 1 , d t ε n - 1 , A 2 h α ε ¯ n + 1 2 A 2 h α d t ε n τ ) | τ 3 ( for α = 1 ) c 0 A h d t e n - 1 0 , Ω ( μ d t ε n - 1 1 ε ¯ n 2 + d t ε n - 1 1 1 2 A 2 h d t ε n - 1 0 , Ω 1 2 d t ε n 1 τ ) τ 3 μ 32 ε ¯ n 2 2 τ + 1 32 d t ε n 1 2 τ 2 + 8 c 0 2 A h d t e n - 1 0 , Ω 2 ( d t ε n - 1 1 2 + d t ε n - 1 1 A 2 h d t ε n - 1 0 , Ω τ ) τ 5 .
It remains to bound the two terms on the right-hand side of (6.2):
2 | ( E n , A h α e ¯ n + 1 2 A h α d t e n τ ) Ω | τ ν 16 e ¯ n α + 1 2 τ + 1 16 d t e n α 2 τ 2 + 16 ν A h α - 1 2 P h E n 0 , Ω 2 τ + 8 A h α 2 P h E n 0 , Ω 2 τ 2 ,
2 | ( F n , A 2 h α ε ¯ n + 1 2 A 2 h α d t e n τ ) Ω | τ μ 16 ε ¯ n α + 1 2 τ + 1 32 d t ε n α 2 τ 2 + 16 μ A 2 h α - 1 2 R 0 h F n 0 , Ω 2 τ + 8 A 2 h α 2 R 0 h F n 0 , Ω 2 τ 2 .
Applying these bounds and the above inequalities of K i , then using (6.3) and (6.5), we obtain from (6.2) that

(6.6) a n - a n - 1 + b n τ 1 2 d n - 1 a n - 1 τ + 1 2 d n - 2 a n - 2 τ + c n α τ + 16 ν A h α - 1 2 P h E n 0 , Ω 2 τ + 8 A h α 2 P h E n 0 , Ω 2 τ 2 + 16 A 2 h α - 1 2 R 0 h F n 0 , Ω 2 τ + 16 A 2 h α 2 R 0 h F n 0 , Ω 2 τ 2

for all 2 n N , where

a n = : e n α 2 + ν 2 e n α + 1 2 τ + ( 1 + μ τ ) ε n α 2 + μ 2 ε n α + 1 2 τ ,
b n = : ν e ¯ n α + 1 2 + μ ε ¯ n α + 1 2 + 1 2 [ d t e n α 2 τ + d t ε n α 2 τ ] ,
c n - 1 α = : 8 c 0 2 ( A h e ¯ n - 1 0 , Ω 2 + A 2 h ε ¯ n - 1 0 , Ω 2 ) ( e ¯ n - 1 α 2 + ε ¯ n - 1 α 2 + ν 2 e ¯ n - 1 α + 1 2 τ + μ 2 ε ¯ n - 1 α + 1 2 τ ) + 8 c 0 2 ( A h e ¯ n - 1 0 , Ω 2 + A 2 h ε ¯ n - 1 0 , Ω 2 ) ( d t e n - 1 α 2 + d t ε n - 1 α 2 + d t e n - 1 α + 1 2 τ + d t ε n - 1 α + 1 2 τ ) τ 2 + 8 c 0 2 ( A h d t e n - 1 0 , Ω 2 + A 2 h d t ε n - 1 0 , Ω 2 ) ( d t e n - 1 α 2 + d t ε n - 1 α 2 ) τ 4 + G n - 1 α ,
G n - 1 α = : 8 c 0 2 A h d t e n - 1 0 , Ω 2 ( d t e n - 1 α + 1 2 + d t ε n - 1 α + 1 2 ) τ 5 + 8 c 0 2 A 2 h d t ε n - 1 0 , Ω 2 d t ε n - 1 α + 1 2 τ 5 ( α = - 1 , 0 ) ,
G n - 1 1 = : 8 c 0 2 A h d t e n - 1 0 , Ω 3 d t e n - 1 1 τ 5 + 8 c 0 2 A 2 h d t ε n - 1 0 , Ω 3 d t ε n - 1 1 τ 5 + 8 c 0 2 A h d t e n - 1 0 , Ω 2 A 2 h d t ε n - 1 0 , Ω d t ε n - 1 1 τ 5 ( α = 1 ) .
Now, summing up (6.6) from 2 to 𝑚 and using Lemma 5.1, we derive for 1 m N that

a m + τ n = 1 m b n 2 a 1 + b 1 τ + τ n = 1 m - 1 d n a n + τ n = 1 m - 1 c n α + 16 ( 1 + ν - 1 + μ - 1 ) κ 2 τ 2 - α τ n = 1 m - 1 d n a n + τ n = 1 m - 1 c n α + [ 2 κ 1 + 16 ( 1 + ν - 1 + μ - 1 ) κ 2 ] τ 2 - α .

Now we apply Lemma 3.9 to get for all 1 m N that

(6.7) a m + τ n = 1 m b n e κ 3 T { ( 2 κ 1 + 16 ( 1 + ν - 1 + μ - 1 ) κ 2 ) τ 2 - α + τ n = 1 m - 1 c n α } .

We can now end the proof of (6.4) by induction. First, we know (6.4) holds for m = 0 , 1 by Lemma 4.1. Then we prove (6.4) for m = J + 1 under the assumption that it holds for m = 0 , 1 , , J . Based on (6.3) and the induction assumption, we have

τ n = 1 m - 1 c n α 64 c 0 2 κ 4 2 ( 1 + ν - 1 + μ - 1 ) τ 3 - α ( for α = - 1 , 0 ) ,
(6.8) τ n = 1 m - 1 c n 1 64 c 0 2 κ 4 2 ( 1 + ν - 1 + μ - 1 ) τ 3 - α + 64 c 0 2 κ 4 2 T 1 2 ( 1 + ν - 3 2 + μ - 3 2 ) τ 3 - α .
Combining these estimates with (6.7) and using (6.3), we get the desired estimate (6.4) for m = J + 1 . ∎

Lemma 6.2

Under Assumptions (A0)(A3) and for 𝜏 satisfying

(6.9) 64 c 0 2 κ 4 2 τ κ 2 , 64 c 0 2 κ 4 2 T 1 2 ( 1 + ν - 3 2 + μ - 3 2 ) τ κ 1 , τ 1 4 μ , κ 5 τ 1 2 ,

there holds that

(6.10) e m - 2 2 + ν 2 e m - 1 2 τ + τ n = 1 m ( d t e n - 2 2 τ + ν e ¯ n - 1 2 ) + ε m - 2 2 + μ 2 ε m - 1 2 τ + τ n = 1 m ( d t ε n - 2 2 τ + μ ε ¯ n - 1 2 ) κ 6 e κ 5 T τ 4

for all 1 m N , where κ 5 = max 1 n N d n , and

d n = 16 c 0 2 ( 1 + ν - 1 + μ - 1 ) ( A h u h ( t n - 1 ) 0 , Ω 2 + A h u h ( t n - 2 ) 0 , Ω 2 ) + 16 c 0 2 ( 1 + ν - 1 + μ - 1 ) ( A 2 h B h ( t n - 1 ) 0 , Ω 2 + A 2 h B h ( t n - 2 ) 0 , Ω 2 ) + 16 c 0 2 ( ν - 1 A h e ¯ n - 1 0 , Ω 2 + μ - 1 A 2 h ε ¯ n - 1 0 , Ω 2 ) + 16 c 0 2 ( e ¯ n - 1 1 2 τ - 1 + ε ¯ n - 1 1 2 τ - 1 + d t e n - 1 1 2 τ + d t ε n - 1 1 2 τ ) .

Proof

We can estimate all the terms K i in (6.2) with α = - 2 , by using the identities

e n - 1 = e ¯ n - 1 + 1 2 d t e n - 1 τ , e n - 2 = e ¯ n - 1 - 1 2 d t e n - 1 τ , ε n - 1 = ε ¯ n - 1 + 1 2 d t ε n - 1 τ , ε n - 2 = ε ¯ n - 1 - 1 2 d t ε n - 1 τ

and Lemmas 3.23.3 and (3.1)–(3.2) as follows:

| K 1 | 1 32 d t e n - 1 - 1 2 τ 3 + ν 32 e ¯ n - 1 - 1 2 τ + 8 c 0 2 ( 1 + ν - 1 ) A h u h ( t n - 1 ) 0 , Ω 2 e n - 2 2 τ ,
| K 2 | 1 32 d t e n - 1 - 1 2 τ 3 + ν 32 e ¯ n - 1 - 1 2 τ + 8 c 0 2 ( 1 + ν - 1 ) A h u h ( t n - 2 ) 0 , Ω 2 e n - 2 2 τ ,
| K 5 | 1 32 d t ε n - 1 - 1 2 τ 3 + μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 ( 1 + μ - 1 ) A 2 h B h ( t n - 1 ) 0 , Ω 2 e n - 2 2 τ ,
| K 6 | 1 32 d t ε n - 1 - 1 2 τ 3 + μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 ( 1 + μ - 1 ) A 2 h B h ( t n - 2 ) 0 , Ω 2 e n - 2 2 τ ,
| K 9 | 1 32 d t e n - 1 - 1 2 τ 3 + ν 32 e ¯ n - 1 - 1 2 τ + 1 32 d t ε n - 1 - 1 2 τ 3 + μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 [ ( 1 + ν - 1 ) A 2 h B h ( t n - 1 ) 0 , Ω 2 + ( 1 + μ - 1 ) A h u h ( t n - 1 ) 0 , Ω 2 ] e n - 2 2 τ ,
| K 10 | 1 32 d t e n - 1 - 1 2 τ 3 + ν 32 e ¯ n - 1 - 1 2 τ + 1 32 d t ε n - 1 - 1 2 τ 3 + μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 ( ( 1 + ν - 1 ) A 2 h B h ( t n - 2 ) 0 , Ω 2 + ( 1 + μ - 1 ) A h u h ( t n - 2 ) 0 , Ω 2 ) e n - 2 2 τ ,
| K 3 1 | ν 32 e ¯ n - 1 - 1 2 τ + 8 c 0 2 ν - 1 A h e ¯ n - 1 0 , Ω 2 e n - 2 2 τ ,
| K 4 | 1 32 d t e n - 1 0 2 τ 4 + 8 c 0 2 e ¯ n - 1 1 2 e n - 2 2 ,
| K 3 2 | 1 32 d t e n - 1 0 2 τ 4 + 8 c 0 2 d t e n - 1 1 2 e n - 2 2 τ 2 ,
| K 7 1 | μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 μ - 1 A 2 h ε ¯ n - 1 0 , Ω 2 e n - 2 2 τ ,
| K 8 | 1 32 d t ε n - 1 0 2 τ 4 + 8 c 0 2 ε ¯ n - 1 1 2 e n - 2 2 ,
| K 11 2 | 1 32 d t ε n - 1 0 2 τ 4 + 8 c 0 2 d t ε n - 1 1 2 e n - 2 2 τ 2 ,
| K 11 1 | μ 32 ε ¯ n - 1 - 1 2 τ + 8 c 0 2 μ - 1 A h e ¯ n - 1 0 , Ω 2 ε n - 2 2 τ ,
| K 12 | 1 32 d t ε n - 1 0 2 τ 4 + 1 32 d t e n - 1 0 2 τ 4 + 8 c 0 2 ( e ¯ n - 1 1 2 + ε ¯ n - 1 1 2 ) ε n - 2 2 ,
| K 7 2 | 1 32 d t ε n - 1 0 2 τ 4 + 8 c 0 2 d t e n - 1 1 2 ε n - 2 2 τ 2 .
Furthermore, the two terms in the right-hand side of (6.2) can be bounded by

2 | ( E n , A - 2 e n ) Ω | τ ν 16 e ¯ n - 1 2 τ + 1 16 d t e n - 2 2 τ 2 + 16 ν A h - 3 2 P h E n 0 , Ω 2 τ + 8 A h - 1 P h E n 0 , Ω 2 τ 2 , 2 | ( F n , A 2 h - 2 ε n ) Ω | τ μ 16 ε ¯ n - 1 2 τ + 1 32 d t ε n - 2 2 τ 2 + 16 μ A 2 h - 3 2 R 0 h F n 0 , Ω 2 τ + 8 A 2 h - 1 R 0 h F n 0 , Ω 2 τ 2 .

Now we can combine the above inequalities with (6.2) for α = - 2 and derive

(6.11) a n - a n - 1 + b n τ + ν 2 [ e n - 1 2 - e n - 1 - 1 2 ] τ + μ 2 [ ε n - 1 2 - ε n - 1 - 1 2 ] τ d n a n τ + [ d t e n - 1 0 2 + d t ε n - 1 0 2 ] τ 4 + [ d t e n - 1 - 1 2 + d t ε n - 1 - 1 2 ] τ 3 + 16 ν A h - 3 2 P h E n 0 , Ω 2 τ + 8 A h - 1 P h E n 0 , Ω 2 τ 2 + 16 μ A 2 h - 3 2 R 0 h F n 0 , Ω 2 τ + 8 A 2 h - 1 R 0 h F n 0 , Ω 2 τ 2

for all 2 n N , where

a n = e n - 2 2 + ( 1 + μ τ ) ε n - 2 2 , b n = ν e ¯ n - 1 2 + μ ε ¯ n - 1 2 .

We then sum up (6.11) over n = 2 , , m , use Lemmas 4.1 and 5.1 to achieve, for 1 m N ,

a m + τ n = 1 m b n a 1 + b 1 τ + τ n = 0 m d n a n + τ n = 1 m [ 16 ν A h - 3 2 P h E n 0 , Ω 2 + 8 A h - 1 P h E n 0 , Ω 2 τ ] + τ n = 1 m [ 16 μ A 2 h - 3 2 R 0 h F n 0 , Ω 2 + 8 A 2 h - 1 R 0 h F n 0 , Ω 2 τ ] τ n = 0 m d n a n + κ 6 τ 4 .

Noting that d n τ κ 5 τ 1 2 from (6.9), we can apply Lemma 3.10 to get the desired estimate (6.10). ∎

Lemma 6.3

Under the assumptions of Lemma 6.2, we have for α = - 1 , 0 and 1 m N that

(6.12) σ ( t m ) e m α 2 + ν σ ( t m ) e m α + 1 2 τ + τ n = 1 m σ ( t n ) ( 1 2 d t e n α 2 τ + ν e ¯ n α + 1 2 ) + σ ( t m ) ε m α 2 + μ σ ( t m ) ε m α + 1 2 τ + τ n = 1 m σ ( t n ) ( 1 2 d t ε n α 2 τ + μ ε ¯ n α + 1 2 ) κ τ 3 - α .

Proof

We multiply (6.6) with α = - 1 , 0 by σ ( t n ) and use σ ( t n ) σ ( t n - 1 ) + τ to get for n 2 that

(6.13) σ ( t n ) a n - σ ( t n - 1 ) a n - 1 + σ ( t n ) b n τ 3 2 a n - 1 τ + a n - 2 τ + 1 2 d n - 1 σ ( t n - 1 ) a n - 1 τ + 1 2 d n - 2 σ ( t n - 2 ) a n - 2 τ + c n α τ + 16 ν σ ( t n ) A h α - 1 2 P h E n 0 , Ω 2 τ + 8 σ ( t n ) A α 2 P h E n 0 , Ω 2 τ 2 + 16 μ σ ( t n ) A 2 h α - 1 2 R 0 h F n 0 , Ω 2 τ + 8 σ ( t n ) A 2 h α 2 R 0 h F n 0 , Ω 2 τ 2 .

Then, summing up (6.13) over n = 2 , 3 , , m and using (6.9), Lemma 4.1 and Lemma 5.1, we further get

(6.14) σ ( t m ) a m + τ n = 1 m σ ( t n ) b n 2 a 1 τ + b 1 τ 2 + 5 2 τ n = 1 m - 1 a n + τ n = 1 m - 1 d n σ ( t n ) a n + τ n = 1 m c n α + κ τ 3 - α τ n = 1 m - 1 a n + τ n = 1 m - 1 d n σ ( t n ) a n + τ n = 1 m c n α + κ τ 3 - α

for 1 m N . Since d n κ 3 , we can apply Lemma 3.9 to (6.14) to obtain

(6.15) σ ( t m ) a m + τ n = 1 m σ ( t n ) b n e κ 3 T ( 5 2 τ n = 1 m - 1 a n + τ n = 1 m c n α + κ τ 3 - α ) .

But, using Lemma 6.1, we have

(6.16) 5 2 τ n = 1 m - 1 a n = 5 2 τ n = 1 m - 1 [ e n α 2 + ν 2 e n α + 1 2 τ + ( 1 + μ τ ) ε n α 2 + μ 2 ε n α + 1 2 τ ] 5 τ n = 1 m - 1 [ e ¯ n α 2 + ν 2 e ¯ n α + 1 2 τ + ε ¯ n α 2 + μ 2 ε ¯ n α + 1 2 τ ] + 5 τ 3 n = 1 m - 1 [ d t e n α 2 + ν 2 d t e n α + 1 2 τ + d t ε n α 2 + μ 2 d t ε n α + 1 2 τ ] κ τ 3 - α .

Combining (6.15) with (6.16) and using (6.8), we derive the desired estimate (6.12). ∎

Lemma 6.4

Under the assumptions of Lemma 6.2, we have, for all 1 m N ,

σ 2 ( t m ) e m 0 2 + τ ν n = 1 m σ 2 ( t n ) e ¯ n 1 2 + σ 2 ( t m ) ε m 0 2 + μ τ n = 1 m σ 2 ( t n ) ε ¯ n 1 2 κ τ 4 .

Proof

Taking v h = 2 e ¯ n τ V h and q h = 0 in (5.3) and C h = 2 ε ¯ n τ W 0 h in (5.4), then adding up the two equations, we obtain

(6.17) e n 0 2 - e n - 1 0 2 + 2 ν e ¯ n 1 2 τ + ε n 0 2 - ε n - 1 0 2 + 2 μ ε ¯ n 1 2 τ + 3 b ( e n - 1 , u h ( t n - 1 ) , e ¯ n ) τ + 3 b ( u h ( t n - 1 ) , e n - 1 , e ¯ n ) τ - b ( e n - 2 , u h ( t n - 2 ) , e ¯ n ) τ - b ( u h ( t n - 2 ) , e n - 2 , e ¯ n ) τ - 3 b ( e n - 1 , e n - 1 , e ¯ n ) τ + b ( e n - 2 , e n - 2 , e ¯ n ) τ + 3 s d ( e ¯ n , ε n - 1 , B h ( t n - 1 ) ) τ + 3 s d ( e ¯ n , B h ( t n - 1 ) , ε n - 1 ) τ - s d ( e ¯ n , ε n - 2 , B h ( t n - 2 ) ) τ - s d ( e ¯ n , B h ( t n - 2 ) , ε n - 2 ) τ - 3 s d ( e ¯ n , ε n - 1 , ε n - 1 ) τ + s d ( e ¯ n , ε n - 2 , ε n - 2 ) τ - 3 d ( e n - 1 , B h ( t n - 1 ) , ε ¯ n ) τ - 3 d ( u h ( t n - 1 ) , ε n - 1 , ε ¯ n ) τ + d ( e n - 2 , B h ( t n - 2 ) , ε ¯ n ) τ + d ( u h ( t n - 2 ) , ε n - 2 , ε ¯ n ) τ + 3 d ( e n - 1 , ε n - 1 , ε ¯ n ) τ - d ( e n - 2 , ε n - 2 , ε ¯ n ) τ = 2 ( E n , e ¯ n ) Ω τ + 2 ( F n , ε ¯ n ) Ω τ .

Then we can use (3.1)–(3.2) and Lemmas 3.23.3 to estimate all the terms in (6.17) as follows:

3 | b ( e n - 1 , u h ( t n - 1 ) , e ¯ n ) | τ + 3 | b ( u h ( t n - 1 ) , e n - 1 , e ¯ n ) | τ c 0 e n - 1 0 A h u h ( t n - 1 ) 0 , Ω e ¯ n 1 τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A h u h ( t n - 1 ) 0 , Ω 2 e n - 1 0 2 τ ,
| b ( e n - 2 , u h ( t n - 2 ) , e ¯ n ) | τ + | b ( u h ( t n - 2 ) , e n - 2 , e ¯ n ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A h u h ( t n - 2 ) 0 , Ω 2 e n - 2 0 2 τ ,
3 | b ( e n - 1 , e n - 1 , e ¯ n ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A h e n - 1 0 , Ω 2 e n - 1 0 2 τ ,
| b ( e n - 2 , e n - 2 , e ¯ n ) | τ ν 16 e ¯ n 1 2 τ + 4 ν c 0 2 A h e n - 2 0 , Ω 2 e n - 2 0 2 τ ,
3 s | d ( e ¯ n , B h ( t n - 1 ) , ε n - 1 ) | τ + 3 s | d ( e ¯ n , ε n - 1 , B h ( t n - 1 ) ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A 2 h B h ( t n - 1 ) 0 , Ω 2 ε n - 1 0 2 τ ,
s | d ( e ¯ n , B h ( t n - 2 ) , ε n - 2 ) | τ + s | d ( e ¯ n , ε n - 2 , B h ( t n - 2 ) ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A 2 h B h ( t n - 2 ) 0 , Ω 2 ε n - 2 0 2 τ ,
3 s | d ( e ¯ n , ε n - 1 , ε n - 1 ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A 2 h ε n - 1 0 , Ω 2 ε n - 1 0 2 τ ,
s | d ( e ¯ n , ε n - 2 , ε n - 2 ) | τ ν 32 e ¯ n 1 2 τ + 8 ν c 0 2 A 2 h ε n - 2 0 , Ω 2 ε n - 2 0 2 τ ,
3 | d ( e n - 1 , B h ( t n - 1 ) , ε ¯ n ) | τ + 3 | d ( u h ( t n - 1 ) , ε n - 1 , ε ¯ n ) | τ μ 16 ε ¯ n 1 2 τ + 8 μ c 0 2 A h u h ( t n - 1 ) 0 , Ω 2 ε n - 1 0 2 τ + 8 μ c 0 2 A 2 h B h ( t n - 1 ) 0 , Ω 2 e n - 1 0 2 τ ,
| d ( e n - 2 , B h ( t n - 2 ) , ε ¯ n ) | τ + | d ( u h ( t n - 2 ) , ε n - 2 , ε ¯ n ) | τ μ 16 ε ¯ n 1 2 τ + 8 μ c 0 2 A h u h ( t n - 2 ) 0 , Ω 2 ε n - 1 0 2 τ + 8 μ c 0 2 A 2 h B h ( t n - 2 ) 0 , Ω 2 e n - 2 0 2 τ ,
3 | d ( e n - 1 , ε n - 1 , ε ¯ n ) | τ μ 32 ε ¯ n 1 2 τ + 8 μ c 0 2 A h e n - 1 0 , Ω 2 ε n - 1 0 2 τ ,
| d ( e n - 2 , ε n - 2 , ε ¯ n ) | τ μ 32 ε ¯ n 1 2 τ + 8 μ c 0 2 A h e n - 2 0 , Ω 2 ε n - 2 0 2 τ ,
while the two terms on the right-hand side of (6.17) can be estimated by

2 | ( E n , e ¯ n ) Ω | τ ν 16 e ¯ n 1 2 τ + 16 ν A h - 1 2 P h E n 0 , Ω 2 τ , 2 | ( F n , ε ¯ ) Ω | μ 16 ε ¯ n 1 2 τ + 16 A 2 h - 1 2 R 0 h F n 0 , Ω 2 τ .

Now we can combine all the above estimates to obtain from (6.17) that

(6.18) a n - a n - 1 + ν e ¯ n 1 2 τ + μ ε ¯ n 1 2 τ 2 ε ¯ n 0 2 τ + 1 2 d n - 1 a n - 1 τ + 1 2 d n - 2 a n - 2 τ + 16 ν A h - 1 2 P h E n 0 , Ω 2 τ + 16 μ A 2 h - 1 2 R 0 h F n 0 , Ω 2 τ

for all 2 n N , where

a n := e n 0 2 + ε n 0 2 ,
d n - 1 := 16 c 0 2 ( ν - 1 + μ - 1 ) ( A h u h ( t n - 1 ) 0 , Ω 2 + A 2 h B h ( t n - 1 ) 0 , Ω 2 ) + 16 c 0 2 ( ν - 1 + μ - 1 ) ( A h e n - 1 0 , Ω 2 + A 2 h ε n - 1 0 , Ω 2 ) .
Multiplying both sides of (6.18) by σ 2 ( t n ) , we can derive

(6.19) σ 2 ( t n ) a n - σ 2 ( t n - 1 ) a n - 1 + ν σ 2 ( t n ) e ¯ n 1 2 τ + μ σ 2 ( t n ) ε ¯ n 1 2 τ 2 τ σ ( t n - 1 ) a n - 1 + 2 σ ( t n ) ε ¯ n 0 2 τ + d n - 1 σ ( t n - 1 ) a n - 1 τ + 2 d n - 2 σ ( t n - 2 ) a n - 2 τ + σ 2 ( t n ) [ 16 ν A h - 1 2 P h E n 0 , Ω 2 τ + 16 μ A 2 h - 1 2 R 0 h F n 0 , Ω 2 τ ]

for all 2 n N . Then the desired error estimates follow for 1 m N by summing up (6.19) from n = 2 to n = m , using Lemmas 4.1 and 5.1 and Lemmas 6.16.3:

σ 2 ( t m ) a m + τ n = 1 m σ 2 ( t n ) ( ν e ¯ n 1 2 + μ ε ¯ n 1 2 ) κ τ 4 + 3 τ n = 1 m - 1 d n σ ( t n ) a n κ τ 4 + 6 τ n = 1 m - 1 d n σ ( t n ) [ e ¯ n 0 2 + ε ¯ n 0 2 ] + 6 τ n = 1 m - 1 d n σ ( t n ) [ d t e n 0 2 τ 2 + d t ε n 0 2 τ 2 ] κ τ 4 .

With the previous estimates of the errors e n = u h ( t n ) - u h n , ε n = B h ( t n ) - B h n , we are now ready to establish the L 2 -bound of the error η n = p ¯ h ( t n ) - p h n for all 1 n N .

It follows from Assumption (A3), (3.1)–(3.2) and Lemmas 4.1, 5.1 and 6.16.4 that

η m 0 κ ( d t e m 0 + e m 1 + e m - 1 1 + e m - 2 1 ) + κ ( ε m - 1 1 2 + ε m - 2 1 2 ) + c P 0 h E n 0 , Ω ,

which yields

(6.20) σ 2 ( t m ) η m 0 2 c σ 2 ( t m ) d t e m 0 2 + c σ ( t m ) e m 1 2 + κ ( σ ( t m - 1 ) e m - 1 1 + σ ( t m - 2 ) e m - 2 1 ) + κ ( σ ( t m - 1 ) ε m - 1 1 2 + σ ( t m - 2 ) ε m - 2 1 2 ) + c σ 2 ( t m ) P 0 h E m 0 , Ω 2 κ τ 2 .

Now it follows readily from (6.20) and (4.14) that, for all 2 m N and some θ m [ t m - 1 , t m ] ,

(6.21) σ 2 ( t m ) p h ( t m ) - p h m 0 2 = σ 2 ( t m ) 1 2 ( p h ( t m ) - p h ( t m - 1 ) ) + η m 0 , Ω 2 2 σ 2 ( t m - 1 ) p h t ( θ m ) 0 , Ω 2 τ 2 + 2 σ 2 ( t m ) η m 0 , Ω 2 2 σ 2 ( θ m ) p h t ( θ m ) 0 , Ω 2 τ 2 + κ τ 2 κ τ 2 .

In summary, we can now conclude the following error estimates by combining (6.20)–(6.21) with Lemmas 6.36.4 and using Theorem 2.1 and Lemma 4.1.

Theorem 6.1

Under Assumptions (A1)(A3) and for 𝜏 satisfying (6.9), the finite element solution ( u h n , p h n , B h n ) to scheme (4.3)–(4.4) has the following error estimates for all t m ( 0 , T ] :

u ( t m ) - u h m 0 , Ω + B ( t m ) - B h m 0 , Ω κ ( σ - 1 2 ( t m ) h 3 + σ - 1 ( t m ) τ 2 ) , ( u ( t m ) - u h m ) 0 , Ω + ( B ( t m ) - B h m ) 0 , Ω κ σ - 1 2 ( t m ) ( h 2 + τ ) , p ( t m ) - p h m 0 , Ω κ σ - 1 ( t m ) ( h 2 + τ ) .

7 Numerical Experiments

In this section, we present some numerical experiments to verify the convergence orders of scheme (4.3)–(4.4). We take a spherical domain of radius 1 2 with the center at ( 0 , 0 , 0 ) . The conforming and shape-regular triangulation with tetrahedral elements is generated by the software Gmsh [8]; see Figure 1 for a sample mesh with h = 1 8 .

Figure 1 
               A sample mesh of 
                     
                        
                           
                              h
                              =
                              
                                 1
                                 8
                              
                           
                        
                        
                        h=\frac{1}{8}
                     
                  .
Figure 1

A sample mesh of h = 1 8 .

For solving system (4.3), we may change the sign of the term ( u h n , q h ) Ω to see this system is symmetric. Then we can apply the MINRES method to solve it, preconditioned by the diagonal block operator

P N S = ( 1 τ I - ν Δ 0 0 I ) - 1 .

Equation (4.4) is symmetric positive definite, so we can apply the conjugate gradient (CG) method to solve it. The two outer iterations terminate when the relative residual reaches 10 - 10 . All experiments are implemented using FEniCS software [22]. We set physical parameters ν = s = μ = 1 and apply the P 2 , P 1 and P 2 finite elements to discretize the velocity 𝐮, pressure 𝑝 and magnetic field 𝐁, respectively.

7.1 Verification of Temporal Accuracies

In this subsection, we check the temporal convergence orders of scheme (4.3)–(4.4). The right-hand sides and the boundary conditions of the MHD equations (1.1) are chosen such that the true solution is given by

(7.1) B = ( y cos ( t ) , z sin ( t ) , x e - t ) , p = 0 , u = ( y e - t , z cos ( t ) , x sin ( t ) ) .

Note that this solution (7.1) is linear in space direction; hence the computational errors mainly come from the time discretization. We fix the mesh size h = 1 16 and refine the time step size 𝜏 to run the scheme. The errors and convergence orders at t = 2 are illustrated in Table 1, where e w is given by e w = w ( t n ) - w h n for any function 𝑤 at recorded time t n . Table 1 demonstrates that scheme (4.3)–(4.4) has the second-order temporal accuracy. In addition, we have also plotted the exact solution (7.1) and the numerical solution in Figure 6. We see the computational solution matches the exact solution very well.

Table 1

Errors and orders of e u L 2 , e u H 1 , e p L 2 , e b L 2 and e b H 1 with the fixed grid size h = 1 16 .

𝜏 e u L 2 Order e u H 1 Order e p L 2 Order e b L 2 Order e b H 1 Order
1 4 2.099e−4 2.559e−3 1.714e−3 3.857e−4 4.469e−3
1 8 2.134e−5 3.29 4.523e−4 2.50 4.111e−4 2.05 4.027e−5 3.25 7.574e−4 2.56
1 16 3.869e−6 2.46 7.946e−5 2.50 9.885e−5 2.05 7.415e−6 2.44 1.286e−4 2.55
1 32 9.295e−7 2.05 1.312e−5 2.59 2.416e−5 2.03 1.746e−6 2.08 2.165e−5 2.57
1 64 2.345e−7 1.99 2.393e−6 2.45 5.967e−6 2.01 4.320e−7 2.01 4.368e−6 2.30
1 128 5.911e−8 1.99 5.664e−7 2.07 1.482e−6 2.00 1.076e−7 2.00 1.032e−6 2.08
1 256 1.495e−8 1.98 1.420e−7 2.00 3.736e−7 1.99 2.689e−8 2.00 2.565e−7 2.00
Figure 6

Comparisons of the exact solution (7.1) and the computational solution at t = 2 .

(a) 
                     Exact solution 𝐁
(a)

Exact solution 𝐁

(b) 
                     Exact solution 𝐮
(b)

Exact solution 𝐮

(c) 
                     Numerical solution 𝐁
(c)

Numerical solution 𝐁

(d) 
                     Numerical solution 𝐮
(d)

Numerical solution 𝐮

7.2 Verification of Spatial Accuracies

In this subsection, we check the spatial approximation orders of scheme (4.3)–(4.4). To this end, we choose the exact solution to the MHD equations (1.1) as follows:

(7.2) B = ( cos ( y + t ) , cos ( z + t ) , cos ( x + t ) ) , p = e - t x y z , u = ( ( y 2 + z 2 ) e - t , ( x 2 + z 2 ) cos ( t ) , ( x 2 + y 2 ) sin ( t ) ) .

We set τ = h and refine both parameters simultaneously to get the approximation errors and convergence orders. The recorded data at t = 2.0 are presented in Table 2. We see from Table 2 that the convergence orders of e u H 1 , e p L 2 , e b L 2 and e b H 1 have the second-order accuracies, while the error order of e u L 2 seems to yield a higher-order accuracy for this experiment. In addition, we also plot the exact solution and the numerical solution at t = 2 in Figure 13, from which we can see that the numerical solution captures the exact solution well.

Table 2

Errors and orders of e u L 2 , e u H 1 , e p L 2 , e b L 2 and e b H 1 at t = 2 that are computed using τ = h .

𝜏 e u L 2 Order e u H 1 Order e p L 2 Order e b L 2 Order e b H 1 Order
1 2 1 2 4.250e−4 6.476e−3 1.166e−2 2.929e−3 2.647e−2
1 4 1 4 3.566e−4 0.25 5.028e−3 0.36 3.805e−3 1.61 5.434e−4 2.43 6.492e−3 2.02
1 8 1 8 4.476e−5 2.99 1.243e−3 2.01 9.169e−4 2.05 8.763e−5 2.63 1.592e−3 2.02
1 16 1 16 4.583e−6 3.28 2.661e−4 2.22 2.118e−4 2.11 1.878e−5 2.22 3.699e−4 2.10
1 32 1 32 4.605e−7 3.31 5.253e−5 2.34 5.073e−5 2.06 4.570e−6 2.03 8.349e−5 2.14
Figure 13

Comparisons of the exact solution (7.2) and our computational solution at t = 2 .

(a) 
                     Exact solution 𝐁
(a)

Exact solution 𝐁

(b) 
                     Exact solution 𝑝
(b)

Exact solution 𝑝

(c) 
                     Exact solution 𝐮
(c)

Exact solution 𝐮

(d) 
                     Numerical solution 𝐁
(d)

Numerical solution 𝐁

(e) 
                     Numerical solution 𝑝
(e)

Numerical solution 𝑝

(f) 
                     Numerical solution 𝐮
(f)

Numerical solution 𝐮

Furthermore, we have also checked the convergence orders of e u L 2 and e b L 2 . To this end, we set τ = h 3 2 to implement the fully discrete scheme (4.3)–(4.4). The corresponding numerical errors and convergence orders of e u L 2 and e b L 2 at t = 2 are displayed in Table 3, from which we can see that e u L 2 and e b L 2 achieve approximately the asymptotical third-order accuracies.

Table 3

Errors and orders of e u L 2 and e b L 2 using τ = h 3 2 .

𝜏 e u L 2 Order e b L 2 Order
1 2 1 3 3.54195e−4 1.15922e−3
1 4 1 8 4.63818e−5 2.93 1.00930e−4 3.52
1 8 1 23 1.19882e−6 5.27 1.55159e−5 2.70
1 16 1 64 8.32105e−8 3.84 2.23924e−6 2.79
1 32 1 181 1.06173e−8 2.97 2.61821e−7 3.09

Award Identifier / Grant number: 11771348

Award Identifier / Grant number: 11771375

Award Identifier / Grant number: 12171415

Award Identifier / Grant number: 14306719

Award Identifier / Grant number: 14306718

Funding statement: The work of the first author was supported by the National Science Foundation of China under grant number 11771348. The second author’s research is partially supported by National Science Foundation of China under grant numbers 11771375 and 12171415. The work of the third author was fully supported by Hong Kong RGC grants (Projects 14306719 and 14306718).

References

[1] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element method with Applications to Partial Differential Equations, Academic Press, New York (1972), 1–359. Search in Google Scholar

[2] G. A. Baker, V. A. Dougalis and O. A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier–Stokes equations, Math. Comp. 39 (1982), no. 160, 339–375. 10.1090/S0025-5718-1982-0669634-0Search in Google Scholar

[3] Ľ. Baňas and A. Prohl, Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations, Math. Comp. 79 (2010), no. 272, 1957–1999. 10.1090/S0025-5718-10-02341-0Search in Google Scholar

[4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Semin. Mat. Univ. Padova 31 (1961), 308–340. Search in Google Scholar

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[6] V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl. (4) 122 (1979), 159–198. 10.1007/BF02411693Search in Google Scholar

[7] J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University, Oxford, 2006. 10.1093/acprof:oso/9780198566656.001.0001Search in Google Scholar

[8] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg. 79 (2009), no. 11, 1309–1331. 10.1002/nme.2579Search in Google Scholar

[9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar

[10] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer, Berlin, 1987. 10.1007/978-3-642-61623-5Search in Google Scholar

[11] M. D. Gunzburger, O. A. Ladyzhenskaya and J. S. Peterson, On the global unique solvability of initial-boundary value problems for the coupled modified Navier–Stokes and Maxwell equations, J. Math. Fluid Mech. 6 (2004), no. 4, 462–482. 10.1007/s00021-004-0107-9Search in Google Scholar

[12] Y. He, Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 41 (2003), no. 4, 1263–1285. 10.1137/S0036142901385659Search in Google Scholar

[13] Y. He and W. Sun, Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 45 (2007), no. 2, 837–869. 10.1137/050639910Search in Google Scholar

[14] Y. He and W. Sun, Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations, Math. Comp. 76 (2007), no. 257, 115–136. 10.1090/S0025-5718-06-01886-2Search in Google Scholar

[15] Y. He and B. Zhang, Convergence of the Euler semi-implicit scheme for the 3D incompressible magnetohydrodynamic equations, submitted. Search in Google Scholar

[16] Y. He and J. Zou, A priori estimates and optimal finite element approximation of the MHD flow in smooth domains, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 1, 181–206. 10.1051/m2an/2018006Search in Google Scholar

[17] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311. 10.1137/0719018Search in Google Scholar

[18] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization, SIAM J. Numer. Anal. 25 (1988), no. 3, 489–512. 10.1137/0725032Search in Google Scholar

[19] J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353–384. 10.1137/0727022Search in Google Scholar

[20] H. Johnston and J.-G. Liu, Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys. 199 (2004), no. 1, 221–259. 10.1016/j.jcp.2004.02.009Search in Google Scholar

[21] O. A. Ladyženskaja and V. A. Solonnikov, Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid, Trudy Mat. Inst. Steklov 59 (1960), 115–173. Search in Google Scholar

[22] A. Logg, K. A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, 2012. 10.1007/978-3-642-23099-8Search in Google Scholar

[23] M. Marion and R. Temam, Navier–Stokes equations: Theory and approximation, Handbook of Numerical Analysis. Vol. VI, North-Holland, Amsterdam (1998), 503–688. 10.1016/S1570-8659(98)80010-0Search in Google Scholar

[24] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University, New York, 2003. 10.1093/acprof:oso/9780198508885.001.0001Search in Google Scholar

[25] A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, M2AN Math. Model. Numer. Anal. 42 (2008), no. 6, 1065–1087. 10.1051/m2an:2008034Search in Google Scholar

[26] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635–664. 10.1002/cpa.3160360506Search in Google Scholar

[27] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, 3rd ed., North-Holland, Amsterdam, 1983. Search in Google Scholar

[28] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci. 68, Springer, New York, 1988. 10.1007/978-1-4684-0313-8Search in Google Scholar

[29] F. Tone, Error analysis for a second order scheme for the Navier–Stokes equations, Appl. Numer. Math. 50 (2004), no. 1, 93–119. 10.1016/j.apnum.2003.12.003Search in Google Scholar

[30] H. Yinnian and L. Kaitai, Nonlinear Galerkin method and two-step method for the Navier–Stokes equations, Numer. Methods Partial Differential Equations 12 (1996), no. 3, 283–305. 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO;2-KSearch in Google Scholar

Received: 2021-09-15
Accepted: 2021-10-06
Published Online: 2021-11-03
Published in Print: 2022-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2021-0172/html
Scroll to top button