Abstract
The rapid detection of brain injury (neuronal damage in general) is an important parameter in the management of cerebrovascular accidents, especially in hemorrhagic and/or ischemic events. Two types of 15-kDa cytoplasmic fatty acid-binding proteins (FABPs), brain-type FABP and heart-type FABP, have recently been postulated as novel markers for brain injury detection. Here we review the possible roles of these FABPs as rapid diagnostic markers for the detection of brain injury due to cerebrovascular accident, trauma or neurodegenerative diseases. The occurrence of brain- and heart-type FABPs in segments of the human brain is also described. Although only limited amounts of data are available, brain- and heart-type FABPs show higher sensitivities and specificities than protein S100 and neuron specific enolase in the rapid detection of brain injury in stroke, trauma and neurodegenerative diseases.
References
1. Aurrel A, Rosengren LE, Karlsson B, Ollson J, Zbornikove V, Haglid KG. Determination of S-100 and glial fibrillary acidic protein concentration in CSF after brain infarction. Stroke 1991; 22: 1254–8. 10.1161/01.STR.22.10.1254Search in Google Scholar
2. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma 2000; 17: 641–7. 10.1089/089771500415391Search in Google Scholar PubMed
3. Herrmann M, Vos PE, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue specific protein after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000; 31: 2670–7. 10.1161/01.STR.31.11.2670Search in Google Scholar PubMed
4. Kilminster S, Treasure T, McMillam T, Holt DW. Neuropsychological change and S-100 protein release in 130 unselected patients undergoing cardiac surgery. Stroke 1999; 30: 1869–74. 10.1161/01.STR.30.9.1869Search in Google Scholar
5. Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke 1998; 29: 2363–6. 10.1161/01.STR.29.11.2363Search in Google Scholar PubMed
6. Nakagawa H, Yamada M, Kanayama T, Tsuruzono K, Miyawaki Y, Tokiyoshi K, et al. Myelin basic protein in the cerebrospinal fluid of patients with brain tumors. Neurosurgery 1994; 34: 825–33. Search in Google Scholar
7. Hanley D. Review of critical care and emergency approaches to stroke. Stroke 2003; 34: 362–4. 10.1161/01.STR.0000054629.76247.EASearch in Google Scholar
8. Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK, et al. Early biomarkers of stroke. Clin Chem 2003; 49: 1733–9. 10.1373/49.10.1733Search in Google Scholar PubMed
9. Vaagenes P, Irdal P, Melvoll R, Valnes K. Enzyme level changes in the cerebrospinal fluid of patients with acute stroke. Arch Neurol 1986; 43: 357–62. 10.1001/archneur.1986.00520040043017Search in Google Scholar PubMed
10. Matias-Guiu J, Martinez-Vazquez J, Ruibal A, Colomer R, Boada M, Codina A. Myelin basic protein and creatine kinase BB isoenzyme as CSF markers of intracranial tumors and stroke. Acta Neurol Scan 1986; 73: 461–5. 10.1111/j.1600-0404.1986.tb04585.xSearch in Google Scholar PubMed
11. Persson L, Hardemark HG, Gustafsson J, Rundstrom G, Mendel-Hartvig I, Esscher T, et al. S100 protein and neuron specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke 1987; 18: 911–8. 10.1161/01.STR.18.5.911Search in Google Scholar PubMed
12. Cunningham RT, Young IS, Winder J, O'Kane MJ, McKinstry S, Johnston CF, et al. Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991; 21: 497–500. 10.1111/j.1365-2362.1991.tb01401.xSearch in Google Scholar
13. Bitsch A, Horn C, Kemmling Y, Seipelt M, Hellenbrand U, Stiefel M, et al. Serum tau protein level as marker of axonal damage in acute ischemic stroke. Eur Neurol 2002; 47: 45–51. 10.1159/000047946Search in Google Scholar
14. Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, Allard L, Hochstrasser DF, Sanchez JC. Fatty acid-binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol Cell Proteomics 2004; 3: 66–72. 10.1074/mcp.M300066-MCP200Search in Google Scholar
15. Guillaume E, Zimmermann C, Burkhard PR, Hochstrasser DF, Sanchez JC. A potential cerebrospinal fluid and plasmatic marker for the diagnosis of Creutzfeldt-Jakob disease. Proteomics 2003; 3: 1495–9. 10.1002/pmic.200300478Search in Google Scholar
16. Lescuyer P, Allard L, Zimmermann-Ivol CG, Burgess JA, Hughes-Frutiger S, Burkhard PR, et al. Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics 2004; 4: 2234–41. 10.1002/pmic.200300822Search in Google Scholar
17. Pelsers MM, Hanhoff T, Van der Voort D, Arts B, Peters M, Ponds R, et al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem 2004; 50: 1568–75. 10.1373/clinchem.2003.030361Search in Google Scholar
18. Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996; 35: 243–82. 10.1016/S0163-7827(96)00006-9Search in Google Scholar
19. Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 2000; 1486: 28–44. 10.1016/S1388-1981(00)00046-9Search in Google Scholar
20. Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res 1999; 85: 329–37. 10.1161/01.RES.85.4.329Search in Google Scholar
21. Thumser AE, Tsai J, Storch J. Collision-mediated transfer of long-chain fatty acids by neural tissue fatty acid-binding proteins (FABP): studies with fluorescent analogs. J Mol Neurosci 2001; 16: 143–50. 10.1385/JMN:16:2-3:143Search in Google Scholar
22. Wolfrum C, Borrmann CM, Borchers T, Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 2001; 98: 2323–8. 10.1073/pnas.051619898Search in Google Scholar
23. Glatz JF, Storch J. Unraveling the significance of cellular fatty acid-binding proteins. Curr Opinion Lipidol 2001; 12: 267–74. 10.1097/00041433-200106000-00005Search in Google Scholar
24. Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 2003; 42: 238–56. 10.1016/S0163-7827(02)00065-6Search in Google Scholar
25. Van Breda E, Keizer HA, Vork MM, Surtel DA, de Jong YF, van der Vusse GJ, et al. Modulation of fatty acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Eur J Physiol 1992; 421: 274–79. 10.1007/BF00374838Search in Google Scholar
26. Glatz JF, van Breda E, Keizer HA, de Jong YF, Lakey JR, Rajotte RV, et al. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun 1994; 199: 639–46. 10.1006/bbrc.1994.1276Search in Google Scholar
27. Pelsers MM, Lutgerink JT, Nieuwenhoven FA, Tandon NN, van der Vusse GJ, Arends JW, et al. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J 1999; 337: 407–14. 10.1042/bj3370407Search in Google Scholar
28. Kragten JA, van Nieuwenhoven FA, van Dieijen-Visser MP, Theunissen PH, Hermens WT, Glatz JF. Distribution of myoglobin and fatty acid-binding protein in human cardiac autopsies. Clin Chem 1996; 42: 337–8. 10.1093/clinchem/42.2.337Search in Google Scholar
29. Vork MM, Trigault N, Snoeckx LH, Glatz JF, van der Vusse GJ. Heterogeneous distribution of fatty acid-binding protein in the hearts of Wistar Kyoto and spontaneously hypertensive rats. J Mol Cell Cardiol 1992; 24: 317–21. 10.1016/0022-2828(92)93168-JSearch in Google Scholar
30. Bass NM, Barker ME, Manning JA, Jones AL, Ockner RK. Acinar heterogeneity of fatty acid-binding protein expression in the livers of male, female and clofibrate-treated rats. Hepatology 1989; 9: 12–21. 10.1002/hep.1840090104Search in Google Scholar
31. Glatz JF, van Bilsen M, Paulussen RJ, Veerkamp J, van der Vusse GJ, Reneman RS. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta 1988; 961: 148–52. 10.1016/0005-2760(88)90141-5Search in Google Scholar
32. Glatz JF, van der Voort D, Hermens WT. Fatty acid-binding protein as the earliest available plasma marker of acute myocardial injury. J Clin Lig Assay 2002; 25: 167–77. Search in Google Scholar
33. Nakata T, Hashimoto A, Hase M, Tsuchihashi K, Shimamoto K. Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome. Cardiology 2003; 99: 96–104. 10.1159/000069726Search in Google Scholar
34. Pelsers MM, Hermens WT, Glatz JF. Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta 2005; 352: 15–35. 10.1016/j.cccn.2004.09.001Search in Google Scholar
35. Owada Y, Utsunomiya A, Kondo H. Spatio-temporally differential expression of the mRNA for brain- and skin-type but not heart-type fatty acid-binding proteins following kainic acid systemic administration in the hippocampal glia of adult rats. Mol Brain Res 1996; 42: 156–60. 10.1016/S0169-328X(96)00182-9Search in Google Scholar
36. Veerkamp JH, Zimmerman AW. Fatty acid-binding proteins of nervous tissue. J Mol Neurosci 2001; 16: 133–42. 10.1385/JMN:16:2-3:133Search in Google Scholar
37. Myers-Payne SC, Hubbell T, Pu L, Schnutgen F, Borchers T, Wood WG, et al. Isolation and characterization of two fatty acid-binding proteins from mouse brain. J Neurochem 1996; 66: 1648–56. 10.1046/j.1471-4159.1996.66041648.xSearch in Google Scholar
38. Kurtz A, Zimmer A, Schnütgen F, Brüning G, Spener F, Müller T. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 1994; 120: 2637–49. 10.1242/dev.120.9.2637Search in Google Scholar
39. Feng L, Hatten ME, Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 1994; 12: 895–908. 10.1016/0896-6273(94)90341-7Search in Google Scholar
40. Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F, et al. Expression of fatty acid binding proteins is altered in aged mouse brain. Mol Cell Biochem 1999; 198: 69-78. 10.1023/A:1006946027619Search in Google Scholar
41. Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 1987; 262: 9709–17. 10.1016/S0021-9258(18)47992-6Search in Google Scholar
42. Sellner PA, Chu W, Glatz JF, Berman NE. Developmental role of fatty acid-binding proteins in the mouse brain. Dev Brain Res 1995; 89: 33–46. 10.1016/0165-3806(95)00099-YSearch in Google Scholar
43. Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta 2004; 342: 1–12. 10.1016/j.cccn.2003.12.008Search in Google Scholar
44. Wunderlich MT, Wallesch CW, Goertler M. Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J Neurol Sci 2004; 227: 49–53. 10.1016/j.jns.2004.08.005Search in Google Scholar
45. Wodzig KW, Pelsers MM, van der Vusse GJ, Roos W, Glatz JF. One-step enzyme linked immunosorbent assay (ELISA) for plasma fatty acid-binding protein. Ann Clin Biochem 1997; 34: 263–8. 10.1177/000456329703400307Search in Google Scholar
46. Ohkaru Y, Asayama K, Ishii H, Nishimura S, Sunahara N, Tanaka T, et al. Development of a sandwich enzyme-linked immunosorbent assay for the determination of human heart type fatty acid-binding protein in plasma and urine by using two different monoclonal antibodies specific for human heart fatty acid-binding protein. J Immunol Methods 1995; 178: 99–111. 10.1016/0022-1759(94)00248-USearch in Google Scholar
47. Fiebig M, Dodge M, Mangion J, Bonnell R, Cardone B, McClure S, et al. Characterization and development of a COBAS EIA to quantitate human heart fatty acid-binding protein for the early detection of acute myocardial infarction. Clin Chem 1997; 6: S158[abstract]. Search in Google Scholar
48. Ghani F, Wu AH, Graff L, Petry C, Armstrong G, Prigent F, et al. Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 2000; 46: 718–9. 10.1093/clinchem/46.5.718Search in Google Scholar
49. Robers M, van der Hulst FF, Fischer MA, Roos W, Salud CE, Eisenwiener HG, et al. Development of a rapid microparticle-enhanced turbidimetric immunoassay for plasma fatty acid-binding protein, an early marker of acute myocardial infarction. Clin Chem 1998; 44: 1564–7. 10.1093/clinchem/44.7.1564Search in Google Scholar
50. Schellinger PD, Warach S. Therapeutic window of thrombolytic therapy following stroke. Curr Atheroscler Rep 2004; 6: 288–94. 10.1007/s11883-004-0060-3Search in Google Scholar
51. Chan CP, Sum KW, Cheung KY, Glatz JF, Sanderson JE, Hempel A, et al. Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein. J Immunol Methods 2003; 279: 91–100. 10.1016/S0022-1759(03)00243-6Search in Google Scholar
52. Watanabe T, Ohkubo Y, Matsuoka H, Kimura H, Sakai Y, Ohkaru Y, et al. Development of a simple whole blood panel test for detection of human heart-type fatty acid-binding protein. Clin Biochem 2001; 34: 257–63. 10.1016/S0009-9120(01)00200-4Search in Google Scholar
53. Jaffe A. Caveat emptor. Am J Med 2003; 115: 241–4. 10.1016/S0002-9343(03)00361-9Search in Google Scholar
54. Pelsers MM, Chapelle JP, Knapen M, Vermeer C, Muijtjens AM, Hermens WT, et al. Influence of age and sex and day-to-day and within-day biological variation on plasma concentrations of fatty acid-binding protein and myoglobin in healthy subjects. Clin Chem 1999; 45: 441–43. Search in Google Scholar
55. Katrukha A, Bereznikova A, Filatov V, Esakova TV, Bulargina TV, Kolosova OV, et al. Improved detection of minor ischemic cardiac injury in patients with unstable angina by measurement of cTnI and fatty acid-binding protein (FABP). Clin Chem 1999; 45: A139[abstract]. Search in Google Scholar
56. Pagani F, Bonora R, Bonetti G, Panteghini M. Evaluation of a sandwich enzyme-linked immunosorbent assay for the measurement of serum heart fatty acid-binding protein. Ann Clin Biochem 2002; 39: 404–5. 10.1258/000456302760042173Search in Google Scholar
57. Wunderlich MT, Hanhoff T, Goertler M, Spener F, Glatz JF, Wallesch CW, et al. Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J Neurol 2005; 252: 718–24. 10.1007/s00415-005-0725-zSearch in Google Scholar
58. Povlishock JT, Jenkins LW. Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 1995; 5: 415–26. 10.1111/j.1750-3639.1995.tb00620.xSearch in Google Scholar
59. Skogseid I, Nordby H, Urdal P, Paus E, Lilleaas F. Increased serum creatine kinase BB and neuron specific enolase following head injury. Acta Neurochir (Wien) 1992; 15: 106–11. 10.1007/BF01406367Search in Google Scholar
60. Ingebritsen T, Romner B, Trumpy J. Management of minor head injury: the value of early computed tomography and serum protein S-100 measurements. J Clin Neurosci 1997; 4: 29–33. 10.1016/S0967-5868(97)90007-2Search in Google Scholar
61. Andreasen N, Blennow K. CSF biomarkers for mild cognitive impairment and early Alzheimer's disease. Clin Neurol Neurosurg 2005; 107: 165–73. 10.1016/j.clineuro.2004.10.011Search in Google Scholar PubMed
62. World Health Organisation. Human transmissible spongiform encephalopathy. Wkly Epidemiol Rec 1998;73:361–5. Search in Google Scholar
63. Chapman T, McKeel DW, Morris JC. Misleading results with the 14-3-3 assay for the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000; 55: 1396–7. 10.1212/WNL.55.9.1396Search in Google Scholar
64. Burkhard PR, Sanches JC Landis T, Hochstrasser DF. CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 2001; 56: 1528–33. 10.1212/WNL.56.11.1528Search in Google Scholar
65. Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry 2003; 8: 343–7. 10.1038/sj.mp.4001220Search in Google Scholar PubMed
66. Steinacker P, Mollenhauer B, Bibl M, Cepek L, Esselmann H, Brechlin P, et al. Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci Lett 2004; 370: 36–9. 10.1016/j.neulet.2004.07.061Search in Google Scholar PubMed
67. Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippber-Steppert C, Mutschler W, et al. Serum S-100B and interleukin-8 as predictive marker for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med 2002; 30: 2669–74. 10.1097/00003246-200212000-00010Search in Google Scholar
68. Missler U, Orlowski N, Nötzold A, Dibbelt L, Steinmeier E, Wiesmann M. Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. Clin Chim Acta 2002; 321: 29–33. 10.1016/S0009-8981(02)00061-XSearch in Google Scholar
69. Broderick JP, Hacke W. Treatment of ischemic stroke. Part I: recanalization strategies. Circulation 2002; 106: 1563–9. 10.1161/01.CIR.0000030406.47365.26Search in Google Scholar PubMed
70. Lynch JR, Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT. Novel diagnostics test for acute stroke. Stroke 2004; 35: 57–63. 10.1161/01.STR.0000105927.62344.4CSearch in Google Scholar PubMed
71. Alzate O, Hussain SA, Goettl VM, Tewari AK, Madiai F, Stephens RL Jr, et al. Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Brain Res Mol Brain 2004; 128: 193–200. 10.1016/j.molbrainres.2004.06.037Search in Google Scholar PubMed
©2005 by Walter de Gruyter Berlin New York