Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

OLTPshare: the case for sharing in OLTP workloads

Published: 01 August 2018 Publication History

Abstract

In the past, resource sharing has been extensively studied for OLAP workloads. Naturally, the question arises, why studies mainly focus on OLAP and not on OLTP workloads? At first sight, OLTP queries - due to their short runtime - may not have enough potential for the additional overhead. In addition, OLTP workloads do not only execute read operations but also updates. In this paper, we address query sharing for OLTP workloads. We first analyze the sharing potential in real-world OLTP workloads. Based on those findings, we then present an execution strategy, called OLTPShare that implements a novel batching scheme for OLTP workloads. We analyze the sharing benefits by integrating OLTPShare into a prototype version of the commercial database system SAP HANA. Our results show for different OLTP workloads that OLTPShare enables SAP HANA to provide a significant throughput increase in high-load scenarios compared to the conventional execution strategy without sharing.

References

[1]
G. Candea, N. Polyzotis, and R. Vingralek. Predictable performance and high query concurrency for data analytics. PVLDB, 20(2):227--248, 2011.
[2]
J. Cohen. On Regenerative Processes in Queueing Theory. Lecture notes in economics and mathematical systems. Springer-Verlag, 1976.
[3]
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC '10, pages 143--154, New York, NY, USA, 2010. ACM.
[4]
J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion concurrency control. PVLDB, 8(11):1190--1201, 2015.
[5]
F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. Sap hana database: Data management for modern business applications. SIGMOD Rec., 40(4):45--51, Jan. 2012.
[6]
P. M. Fernandez. Red brick warehouse: A read-mostly RDBMS for open SMP platforms. In Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, May 24--27, 1994., page 492, 1994.
[7]
G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: Killing one thousand queries with one stone. PVLDB, 5(6):526--537, 2012.
[8]
S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A simultaneously pipelined relational query engine. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD '05, pages 383--394, New York, NY, USA, 2005. ACM.
[9]
J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast updates on read-optimized databases using multi-core cpus. PVLDB, 5(1):61--72, 2011.
[10]
W. Lehner, R. Cochrane, H. Pirahesh, and M. Zaharioudakis. fast refresh using mass query optimization. In Proceedings of the 17th International Conference on Data Engineering, April 2--6, 2001, Heidelberg, Germany, pages 391--398, 2001.
[11]
D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann. Mqjoin: Efficient shared execution of main-memory joins. PVLDB, 9(6):480--491, 2016.
[12]
D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. Batchdb: Efficient isolated execution of hybrid oltp+olap workloads for interactive applications. In Procee dings of the 2017 ACM International Conference on Management of Data, SIGMOD '17, pages 37--50, New York, NY, USA, 2017. ACM.
[13]
I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented transaction execution. PVLDB, 3(1--2):928--939, 2010.
[14]
I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. Sharing data and work across concurrent analytical queries. PVLDB, 6(9):637--648, 2013.
[15]
N. Roussopoulos. View indexing in relational databases. ACM Trans. Database Syst., 7(2):258--290, June 1982.
[16]
T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23--52, Mar. 1988.
[17]
M. M. Simo Neuvonen, Antoni Wolski and V. Raatikka. Telecommunication application transaction processing (TATP) benchmark description. Technical report, IBM Software Group Information Management, March 2009.
[18]
A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: Fast distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD '12, pages 1--12, New York, NY, USA, 2012. ACM.
[19]
TPC-H. TPC BENCHMARK™C Standard Specification Revision 5.11. Technical report, Transaction Processing Performance Council (TPC), February 2010.
[20]
S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar. State-slice: New paradigm of multi-query optimization of window-based stream queries. In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12--15, 2006, pages 619--630, 2006.
[21]
T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units. PVLDB, 2(1):385--394, 2009.
[22]
C. Yan and A. Cheung. Leveraging lock contention to improve oltp application performance. PVLDB, 9(5):444--455, 2016.
[23]
D. V. A. Zeyuan Shang and A. Pavlo. Carnegie Mellon Database Application Catalog (CMDBAC). http://cmdbac.cs.cmu.edu, 2018. {Online; accessed 01-March-2018}.
[24]
J. Zhou, P. Larson, J. C. Freytag, and W. Lehner. Efficient exploitation of similar subexpressions for query processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12--14, 2007, pages 533--544, 2007.

Cited By

View all
  • (2023)SH2O: Efficient Data Access for Work-Sharing DatabasesProceedings of the ACM on Management of Data10.1145/36173401:3(1-26)Online publication date: 13-Nov-2023
  • (2023)An Optimized Solution for Highly Contended Transactional WorkloadsDependable Software Engineering. Theories, Tools, and Applications10.1007/978-981-99-8664-4_23(402-418)Online publication date: 27-Nov-2023
  • (2022)Are updatable learned indexes ready?Proceedings of the VLDB Endowment10.14778/3551793.355184815:11(3004-3017)Online publication date: 29-Sep-2022
  • Show More Cited By
  1. OLTPshare: the case for sharing in OLTP workloads

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 11, Issue 12
    August 2018
    426 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 August 2018
    Published in PVLDB Volume 11, Issue 12

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)20
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 28 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)SH2O: Efficient Data Access for Work-Sharing DatabasesProceedings of the ACM on Management of Data10.1145/36173401:3(1-26)Online publication date: 13-Nov-2023
    • (2023)An Optimized Solution for Highly Contended Transactional WorkloadsDependable Software Engineering. Theories, Tools, and Applications10.1007/978-981-99-8664-4_23(402-418)Online publication date: 27-Nov-2023
    • (2022)Are updatable learned indexes ready?Proceedings of the VLDB Endowment10.14778/3551793.355184815:11(3004-3017)Online publication date: 29-Sep-2022
    • (2022)NFLProceedings of the VLDB Endowment10.14778/3547305.354732215:10(2188-2200)Online publication date: 7-Sep-2022
    • (2022)GaccO - A GPU-accelerated OLTP DBMSProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3517876(1003-1016)Online publication date: 10-Jun-2022
    • (2022)To share or not to share vector registers?The VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-022-00744-231:6(1215-1236)Online publication date: 28-Apr-2022
    • (2021)Sharing opportunities for OLTP workloads in different isolation levelsProceedings of the VLDB Endowment10.14778/3401960.340196713:10(1696-1708)Online publication date: 10-Mar-2021
    • (2021)GalOPProceedings of the 17th International Workshop on Data Management on New Hardware10.1145/3465998.3466007(1-3)Online publication date: 20-Jun-2021
    • (2021)On the Throughput Optimization in Large-Scale Batch-Processing SystemsACM SIGMETRICS Performance Evaluation Review10.1145/3453953.345398248:3(128-129)Online publication date: 5-Mar-2021
    • (2021)Resource-efficient Shared Query Execution via Exploiting Time SlacknessProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457282(1797-1810)Online publication date: 9-Jun-2021
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media