Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

GRETA: graph-based real-time event trend aggregation

Published: 01 September 2017 Publication History

Abstract

Streaming applications from algorithmic trading to traffic management deploy Kleene patterns to detect and aggregate arbitrarily-long event sequences, called event trends. State-of-the-art systems process such queries in two steps. Namely, they first construct all trends and then aggregate them. Due to the exponential costs of trend construction, this two-step approach suffers from both a long delays and high memory costs. To overcome these limitations, we propose the Graph-based Real-time Event Trend Aggregation (GRETA) approach that dynamically computes event trend aggregation without first constructing these trends. We define the GRETA graph to compactly encode all trends. Our GRETA runtime incrementally maintains the graph, while dynamically propagating aggregates along its edges. Based on the graph, the final aggregate is incrementally updated and instantaneously returned at the end of each query window. Our GRETA runtime represents a win-win solution, reducing both the time complexity from exponential to quadratic and the space complexity from exponential to linear in the number of events. Our experiments demonstrate that GRETA achieves up to four orders of magnitude speed-up and up to 50--fold memory reduction compared to the state-of-the-art two-step approaches.

References

[1]
Esper. http://www.espertech.com/.
[2]
Flink. https://flink.apache.org/.
[3]
Google Dataflow. https://cloud.google.com/dataflow/.
[4]
Microsoft StreamInsight. https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx.
[5]
Stock data. http://davis.wpi.edu/datasets/Stock_Trace_Data/.
[6]
J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In SIGMOD, pages 147--160, 2008.
[7]
A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A stream data management benchmark. PVLDB, 30(1):480--491, 2004.
[8]
A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggregates. PVLDB, 30(1):336--347, 2004.
[9]
A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A general purpose event monitoring system. In CIDR, pages 412--422, 2007.
[10]
T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid. Incremental evaluation of sliding-window queries over data streams. IEEE Trans. on Knowl. and Data Eng., 19(1):57--72, 2007.
[11]
J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl. Discov., 1(1):29--53, 1997.
[12]
A. Khan. 501 Stock Market Tips and Guidelines. Writers Club Press, 2002.
[13]
S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for streamed aggregation. In SIGMOD, pages 623--634, 2006.
[14]
A. Lerner and D. Shasha. AQuery: Query language for ordered data, optimization techniques, and experiments. PVLDB, 29(1):345--356, 2003.
[15]
J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: Efficient evaluation of sliding window aggregates over data streams. In SIGMOD, pages 39--44, 2005.
[16]
J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation techniques for window aggregates in data streams. In SIGMOD, pages 311--322, 2005.
[17]
J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier. Out-of-order processing: a new architecture for high-performance stream systems. PVLDB, 1(1):274--288, 2008.
[18]
M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T. Claypool. Sequence pattern query processing over out-of-order event streams. In ICDE, pages 784--795, 2009.
[19]
M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and A. Mehta. E-Cube: Multi-dimensional event sequence analysis using hierarchical pattern query sharing. In SIGMOD, pages 889--900, 2011.
[20]
E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. OLAP on sequence data. In SIGMOD, pages 649--660, 2008.
[21]
J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and H. Wang. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13):2134--2145, 2015.
[22]
Y. Mei and S. Madden. ZStream: A Cost-based Query Processor for Adaptively Detecting Composite Events. In SIGMOD, pages 193--206, 2009.
[23]
I. Motakis and C. Zaniolo. Temporal aggregation in active database rules. In SIGMOD, pages 440--451, 1997.
[24]
O. Poppe, C. Lei, S. Ahmed, and E. A. Rundensteiner. Complete event trend detection in high-rate event streams. In SIGMOD, pages 109--124, 2017.
[25]
O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier. GRETA: Graph-based Real-time Event Trend Aggregation. http://users.wpi.edu/~opoppe/papers/Greta-full.pdf, 2017. Technical report in progress.
[26]
Y. Qi, L. Cao, M. Ray, and E. A. Rundensteiner. Complex event analytics: Online aggregation of stream sequence patterns. In SIGMOD, pages 229--240, 2014.
[27]
R. Sadri, C. Zaniolo, A. Zarkesh, and J. Abidi. Expressing and optimizing sequence queries in database systems. In ACM Trans. on Database Systems, pages 282--318, 2004.
[28]
U. Schöning. Theoretische Informatik - kurzgefaßt (3. Aufl.). Spektrum Akademischer Verlag, 1997.
[29]
P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: Design and Implementation of a Sequence Database System. PVLDB, 22(1):99--110, 1996.
[30]
K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incremental sliding-window aggregation. PVLDB, 8(7):702--713, 2015.
[31]
E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event Processing over streams. In SIGMOD, pages 407--418, 2006.
[32]
H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expensive queries in Complex Event Processing. In SIGMOD, pages 217--228, 2014.
[33]
R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations over data streams. In SIGMOD, pages 299--310, 2005.
[34]
R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou. Streaming multiple aggregations using phantoms. PVLDB, 19(4):557--583, 2010.

Cited By

View all
  • (2024)On-Demand Pattern Aggregation in Event NetworksProceedings of the International Workshop on Big Data in Emergent Distributed Environments10.1145/3663741.3664781(1-6)Online publication date: 9-Jun-2024
  • (2022)COREProceedings of the VLDB Endowment10.14778/3538598.353861515:9(1951-1964)Online publication date: 1-May-2022
  • (2022)Gloria: Graph-based Sharing Optimizer for Event Trend AggregationProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3526145(1122-1135)Online publication date: 10-Jun-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 11, Issue 1
Proceedings of the 44th International Conference on Very Large Data Bases, Rio de Janeiro, Brazil
September 2017
120 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 September 2017
Published in PVLDB Volume 11, Issue 1

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)On-Demand Pattern Aggregation in Event NetworksProceedings of the International Workshop on Big Data in Emergent Distributed Environments10.1145/3663741.3664781(1-6)Online publication date: 9-Jun-2024
  • (2022)COREProceedings of the VLDB Endowment10.14778/3538598.353861515:9(1951-1964)Online publication date: 1-May-2022
  • (2022)Gloria: Graph-based Sharing Optimizer for Event Trend AggregationProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3526145(1122-1135)Online publication date: 10-Jun-2022
  • (2021)Efficient Complete Event Trend Detection over High-Velocity StreamsProceedings of the 50th International Conference on Parallel Processing10.1145/3472456.3472526(1-12)Online publication date: 9-Aug-2021
  • (2021)To Share, or not to Share Online Event Trend Aggregation Over Bursty Event StreamsProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3452785(1452-1464)Online publication date: 9-Jun-2021
  • (2020)MuseProceedings of the 29th ACM International Conference on Information & Knowledge Management10.1145/3340531.3412138(2193-2196)Online publication date: 19-Oct-2020
  • (2019)Event Trend Aggregation Under Rich Event Matching SemanticsProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3319862(555-572)Online publication date: 25-Jun-2019

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media