Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A general and parallel platform for mining co-movement patterns over large-scale trajectories

Published: 01 November 2016 Publication History

Abstract

Discovering co-movement patterns from large-scale trajectory databases is an important mining task and has a wide spectrum of applications. Previous studies have identified several types of interesting co-movement patterns and show-cased their usefulness. In this paper, we make two key contributions to this research field. First, we propose a more general co-movement pattern to unify those defined in the past literature. Second, we propose two types of parallel and scalable frameworks and deploy them on Apache Spark. To the best of our knowledge, this is the first work to mine co-movement patterns in real life trajectory databases with hundreds of millions of points. Experiments on three real life large-scale trajectory datasets have verified the efficiency and scalability of our proposed solutions.

References

[1]
R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In VLDB, pages 487--499, 1994.
[2]
H. H. Aung and K.-L. Tan. Discovery of evolving convoys. In SSDM, pages 196--213, 2010.
[3]
J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel. A survey on recommendations in location based social networks. In Geoinformatica, pages 525--543, 2015.
[4]
D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In Cartographica, pages 112--122, 1973.
[5]
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In SIGKDD, pages 226--231, 1996.
[6]
J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In GIS, pages 35--42, 2006.
[7]
L. Guo, D. Zhang, G. Cong, W. Wu, and K.-L. Tan. Influence maximization in trajectory databases. In TKDE, page 1, 2016.
[8]
H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. In VLDB, pages 1068--1080, 2008.
[9]
R. Jinno, K. Seki, and K. Uehara. Parallel distributed trajectory pattern mining using mapreduce. In CloudCom, pages 269--273, 2012.
[10]
P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In SSTD, pages 364--381, 2005.
[11]
Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating skew in mapreduce applications. In SIGMOD, pages 25--36, 2012.
[12]
P. Laube, M. van Kreveld, and S. Imfeld. Finding remodetecting relative motion patterns in geospatial lifelines. In DSDH, pages 201--215. 2005.
[13]
X. Li, V. Ceikute, C. S. Jensen, and K.-L. Tan. Effective online group discovery in trajectory databases. In TKDE, pages 2752--2766, 2013.
[14]
X. Li, V. Ceikute, S. Jensen, Christian, and K.-L. Tan. Effective online group discovery in trajectory databases. 2013.
[15]
Y. Li, J. Bailey, and L. Kulik. Efficient mining of platoon patterns in trajectory databases. In DKE, pages 167--187, 2015.
[16]
Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. In VLDB, pages 723--734, 2010.
[17]
Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In SIGKDD, pages 1099--1108, 2010.
[18]
J. Pei, J. Han, R. Mao, et al. Closet: An efficient algorithm for mining frequent closed itemsets. In DMKD, pages 21--30, 2000.
[19]
J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In SIGKDD, pages 236--245, 2003.
[20]
Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient mining of group patterns from user movement data. In DKE, pages 240--282, 2006.
[21]
J. S. Yoo and S. Shekhar. A joinless approach for mining spatial colocation patterns. In TKDE, pages 1323--1337, 2006.
[22]
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In USENIX, pages 15--28, 2012.
[23]
K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of gathering patterns from trajectories. In ICDE, pages 242--253, 2013.
[24]
Y. Zheng. Trajectory data mining: an overview. In TIST, pages 1--41, 2015.
[25]
Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs. In UbiComp, pages 89--98, 2011.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 10, Issue 4
November 2016
180 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 November 2016
Published in PVLDB Volume 10, Issue 4

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)2
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Colossal Trajectory MiningExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122055238:PDOnline publication date: 15-Mar-2024
  • (2024)ECEQ: efficient multi-source contact event query processing for moving objectsWorld Wide Web10.1007/s11280-024-01309-927:6Online publication date: 1-Nov-2024
  • (2024)Predicting Co-movement patterns in mobility dataGeoinformatica10.1007/s10707-022-00478-x28:2(221-243)Online publication date: 1-Apr-2024
  • (2024)Meeting Pattern Detection from Trajectories in Road NetworkWeb and Big Data10.1007/978-981-97-7235-3_27(405-420)Online publication date: 31-Aug-2024
  • (2023)Co-Movement Pattern Mining from VideosProceedings of the VLDB Endowment10.14778/3632093.363211917:3(604-616)Online publication date: 1-Nov-2023
  • (2023)Relaxed group pattern detection over massive-scale trajectoriesFuture Generation Computer Systems10.1016/j.future.2023.02.028144:C(131-139)Online publication date: 1-Jul-2023
  • (2023)TinbaAdvanced Engineering Informatics10.1016/j.aei.2023.10206457:COnline publication date: 1-Aug-2023
  • (2023)SQUID: subtrajectory query in trillion-scale GPS databaseThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-022-00777-732:4(887-904)Online publication date: 19-Jan-2023
  • (2022)Zebra regressionProceedings of the 30th International Conference on Advances in Geographic Information Systems10.1145/3557915.3561002(1-12)Online publication date: 1-Nov-2022
  • (2021)MaSEC: Discovering Anchorages and Co-movement Patterns on Streaming Vessel TrajectoriesProceedings of the 17th International Symposium on Spatial and Temporal Databases10.1145/3469830.3470909(170-173)Online publication date: 23-Aug-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media