Nothing Special   »   [go: up one dir, main page]

skip to main content
article

An experimental analysis of iterated spatial joins in main memory

Published: 01 September 2013 Publication History

Abstract

Many modern applications rely on high-performance processing of spatial data. Examples include location-based services, games, virtual worlds, and scientific simulations such as molecular dynamics and behavioral simulations. These applications deal with large numbers of moving objects that continuously sense their environment, and their data access can often be abstracted as a repeated spatial join. Updates to object positions are interspersed with these join operations, and batched for performance. Even for the most demanding scenarios, the data involved in these joins fits comfortably in the main memory of a cluster of machines, and most applications run completely in main memory for performance reasons.
Choosing appropriate spatial join algorithms is challenging due to the large number of techniques in the literature. In this paper, we perform an extensive evaluation of repeated spatial join algorithms for distance (range) queries in main memory. Our study is unique in breadth when compared to previous work: We implement, tune, and compare ten distinct algorithms on several workloads drawn from the simulation and spatial indexing literature. We explore the design space of both index nested loops algorithms and specialized join algorithms, as well as the use of moving object indices that can be incrementally maintained. Surprisingly, we find that when queries and updates can be batched, repeatedly re-computing the join result from scratch outperforms using a moving object index in all but the most extreme cases. This suggests that--given the code complexity of index structures for moving objects -- specialized join strategies over simple index structures, such as Synchronous Traversal over R-Trees, should be the methods of choice for the above applications.

References

[1]
Project Website. www.cs.cornell.edu/bigreddata/spatial-indexing/.
[2]
H. K. Ahn, N. Mamoulis, and H. M. Wong. A survey on multidimensional access methods. Technical Report UU-CS-2001-14, Department of Information and Computing Sciences, Utrecht University, 2001.
[3]
L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Scalable sweeping-based spatial join. In Proc. VLDB, pages 570-581, 1998.
[4]
T. Brinkhoff. A framework for generating network-based moving objects. Geoinformatica, 6(2):153-180, 2002.
[5]
T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using R-trees. In Proc. SIGMOD, pages 237-246, 1993.
[6]
S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating moving object indexes. Proc. VLDB, pages 1574-1585, 2008.
[7]
I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433(7025):513-516, 2005.
[8]
M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong. Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.
[9]
J. Dittrich, L. Blunschi, and M. A. Vaz Salles. MOVIES: indexing moving objects by shooting index images. Geoinformatica, 15(4):727-767, 2011.
[10]
C. Düntgen, T. Behr, and R. H. Güting. BerlinMOD: a benchmark for moving object databases. The VLDB Journal, 18(6):1335-1368, 2009.
[11]
V. Gaede and O. Günther. Multidimensional access methods. ACM Comput. Surv., 30(2):170-231, 1998.
[12]
O. Günther, V. Oria, P. Picouet, J.-M. Saglio, and M. Scholl. Benchmarking spatial joins à la carte. In Proc. SSDBM, 1998.
[13]
N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and W. White. Scalability for virtual worlds. In Proc. ICDE, 2009.
[14]
A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. SIGMOD, pages 47-57, 1984.
[15]
S. Hwang, K. Kwon, S. Cha, and B. Lee. Performance evaluation of main-memory R-tree variants. Advances in Spatial and Temporal Databases, pages 10-27, 2003.
[16]
Intel VTune Performance Analyzer. http://software.intel.com/en-us/intel-vtune.
[17]
G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of k-nn and spatial join queries on continuously moving points. ACM Trans. Database Syst., 31(2):485-536, 2006.
[18]
E. H. Jacox and H. Samet. Spatial join techniques. ACM Trans. Database Syst., 32(1):7, 2007.
[19]
C. Jensen, D. Tiešyte, and N. Tradišauskas. The cost benchmark--comparison and evaluation of spatio-temporal indexes. Database Systems for Advanced Applications, pages 125-140, 2006.
[20]
D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main memory evaluation of monitoring queries over moving objects. Distrib. Parallel Databases, 15(2):117-135, 2004.
[21]
K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index trees for main memory access. SIGMOD Rec., 30(2):139-150, 2001.
[22]
S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple and efficient algorithm for R-tree packing. Technical report, Institute for Computer Applications in Science and Engineering (ICASE), 1997.
[23]
S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for the new bottleneck: memory access. The VLDB Journal, 9:231-246, December 2000.
[24]
M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In SIGMOD'04: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 623-634, New York, NY, USA, 2004. ACM.
[25]
K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In SIGMOD'05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 634-645, New York, NY, USA, 2005. ACM.
[26]
J. Myllymaki and J. Kaufman. Locus: A testbed for dynamic spatial indexing. IEEE Data Eng. Bull., 25:48-55, 2002.
[27]
J. Myllymaki and J. Kaufman. Dynamark: A benchmark for dynamic spatial indexing. In Proc. MDM, pages 92-105, 2003.
[28]
J. Myllymaki and J. Kaufman. High-performance spatial indexing for location-based services. In Proc. WWW, pages 112-117, 2003.
[29]
J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proc. PODS, pages 181-190, 1984.
[30]
J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: an efficient index for predicted trajectories. In Proc. SIGMOD, pages 635-646, 2004.
[31]
J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. SIGMOD Rec., 25(2):259-270, 1996.
[32]
D. Šidlauskas, K. Ross, C. Jensen, and S. Šaltenis. Thread-level parallel indexing of update intensive moving-object workloads. In Advances in Spatial and Temporal Databases, volume LNCS 6849, pages 186-204. Springer Berlin / Heidelberg, 2011.
[33]
Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In Proc. VLDB, pages 790-801, 2003.
[34]
Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the generation of spatiotemporal datasets. In Proc. SSD, pages 147-164, London, UK, 1999.
[35]
T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. On the generation of time-evolving regional data. Geoinformatica, 6(3):207-231, 2002.
[36]
L. Verlet. Computer "experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys. Rev., 159(1):98, 1967.
[37]
S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously moving objects. In Proc. SIGMOD, pages 331-342, 2000.
[38]
D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen, and D. Šaulys. Trees or grids?: indexing moving objects in main memory. In Proc. GIS, pages 236-245, 2009.
[39]
G. Wang, M. V. Salles, B. Sowell, X. Wang, T. Cao, A. Demers, J. Gehrke, and W. White. Behavioral simulations in mapreduce. Proc. VLDB, 3:952-963, September 2010.
[40]
W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. Scaling games to epic proportions. In Proc. SIGMOD, 2007.

Cited By

View all

Index Terms

  1. An experimental analysis of iterated spatial joins in main memory
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 6, Issue 14
    September 2013
    384 pages

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 September 2013
    Published in PVLDB Volume 6, Issue 14

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Three-dimensional Geospatial Interlinking with JedAI-spatialJournal of Web Semantics10.1016/j.websem.2024.10081781(100817)Online publication date: Jul-2024
    • (2023)Defining and designing spatial queries: the role of spatial relationshipsGeo-spatial Information Science10.1080/10095020.2022.2163924(1-25)Online publication date: 17-May-2023
    • (2022)Geospatial Interlinking with JedAI-spatialCompanion Proceedings of the Web Conference 202210.1145/3487553.3526093(499-500)Online publication date: 25-Apr-2022
    • (2021)Feat-SKSJProceedings of the 29th International Conference on Advances in Geographic Information Systems10.1145/3474717.3483629(15-24)Online publication date: 2-Nov-2021
    • (2020)LocationSpark: In-memory Distributed Spatial Query Processing and OptimizationFrontiers in Big Data10.3389/fdata.2020.000303Online publication date: 16-Oct-2020
    • (2020)Spatial Information Retrieval in Digital EcosystemsProceedings of the 12th International Conference on Management of Digital EcoSystems10.1145/3415958.3433038(10-17)Online publication date: 2-Nov-2020
    • (2020)Architecting a Query Compiler for Spatial WorkloadsProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389701(2103-2118)Online publication date: 11-Jun-2020
    • (2020)FESTIval: A versatile framework for conducting experimental evaluations of spatial indicesMethodsX10.1016/j.mex.2019.10.0067(100695)Online publication date: 2020
    • (2020)Cost estimation of spatial join in spatialhadoopGeoinformatica10.1007/s10707-020-00414-x24:4(1021-1059)Online publication date: 1-Oct-2020
    • (2019)Spatial joinsSIGSPATIAL Special10.1145/3355491.335549411:1(13-21)Online publication date: 5-Aug-2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media