Nothing Special   »   [go: up one dir, main page]

JSIAM Letters
Online ISSN : 1883-0617
Print ISSN : 1883-0609
ISSN-L : 1883-0617
Computing Morse decomposition of ODEs via Runge-Kutta method
Yuki ChibaTomoyuki MiyajiToshiyuki Ogawa
Author information
JOURNAL FREE ACCESS

2021 Volume 13 Pages 40-43

Details
Abstract

A method of computing combinatorial Morse decomposition for a system of ordinary differential equations is proposed. It uses numerical solutions by Runge-Kutta method, and it is based on an affine approximation and QR decomposition. In contrast to interval arithmetic, it enables us to compute Morse decomposition at lower computational costs sacrificing for mathematical rigor. Numerical examples for time-T map of 3D ODE and a 3D Poincaré map for 4D ODE are presented for comparison between existing and proposed methods.

Content from these authors
© 2021, The Japan Society for Industrial and Applied Mathematics
Previous article Next article
feedback
Top