- Статистическая значимость
-
В статистике величину называют статисти́чески зна́чимой, если мала вероятность её случайного возникновения или еще более крайних величин. Здесь под крайностью понимается степень отклонения тестовой статистики от нуль-гипотезы. Разница называется «статистически значимой», если появление имеющихся данных (или еще более крайних данных) было бы маловероятно, если предположить, что эта разница отсутствует; это выражение не означает, что данная разница должна быть велика, важна, или значима в общем смысле этого слова.
Уровень значимости теста — вероятность отклонить нулевую гипотезу, если на самом деле нулевая гипотеза верна (решение известное как ошибка первого рода, или ложноположительное решение). Процесс решения часто опирается на p-величину (читается «пи-величина»). p-величина — собственно накопленная вероятность наблюдения уровня статистического критерия (насчитанного по выборке) при принятии нулевой гипотезы. Если p-величина меньше выбранного аналитиком критического уровня накопленной вероятности, то нулевая гипотеза отвергается. Так, событие с накопленной вероятностью 0,05 можно признать маловероятным (в одном испытании). Чем меньше p-величина, тем меньше вероятность нулевой гипотезы и значима тестовая статистика. Чем меньше p-величина, тем сильнее основания отвергнуть нулевую гипотезу. это традиционное понятие проверки гипотез в частотной статистике. Уровень значимости обыкновенно обозначают греческой буквой α (альфа). Популярными уровнями значимости являются 10 %, 5 %, 1 %, и 0,1 %. Если тест выдаёт p-величину меньше α-уровня, то нулевая гипотеза отклоняется. Такие результаты называют «статистически значимыми». Например, если кто-то говорит, что «шансы того, что случившееся является совпадением, равны одному из тысячи», то имеется в виду 0,1 % уровень значимости.
Различные значения α-уровня имеют свои достоинства и недостатки. Меньшие α-уровни дают бо́льшую уверенность в том, что уже установленная альтернативная гипотеза значима, но при этом есть больший риск не отвергнуть ложную нулевую гипотезу (ошибка второго рода, или «ложноотрицательное решение»), и таким образом меньшая статистическая мощность. Выбор α-уровня неизбежно требует компромисса между значимостью и мощностью, и следовательно между вероятностями ошибок первого и второго рода.
В отечественных научных работах часто употребляется неправильный термин «достоверность» вместо термина «статистическая значимость».[источник не указан 204 дня]
При использовании тестов на статистическую значимость нужно иметь в виду, что тест вовсе не дает оснований для принятия нулевой гипотезы. Он лишь определяет вероятность (p-величину) ошибочного отклонения нулевой гипотезы[1].
См. также
Примечания
- ↑ Keith M. Bower and James A. Colton. Why We Don’t «Accept» the Null Hypothesis // American Society for Quality, Six Sigma Forum, July 2003.
Литература
George Casella, Roger L. Berger Hypothesis Testing // Statistical Inference. — Second Edition. — Pacific Grove, CA: Duxbury, 2002. — С. 397. — 660 с. — ISBN 0-534-24312-6
Ссылки
Статистические показатели Описательная
статистикаНепрерывные
данныеКоэффициент сдвига Среднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах Вариация Ранг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль) Моменты Математическое ожидание · Дисперсия · Асимметрия · Эксцесс Дискретные
данныеЧастота · Таблица контингентности Статистический
вывод и
проверка
гипотезСтатистический
выводДоверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ Планирование
экспериментаГенеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность Объём выборки Статистическая мощность · Мера эффекта · Стандартная ошибка Общая оценка Байесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала Статистические
критерииZ-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса Анализ выживания Функция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей Корреляция Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания Линейные модели Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ Регрессия Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами Категории:- Математическая статистика
- Ошибки
Wikimedia Foundation. 2010.