Nothing Special   »   [go: up one dir, main page]

Phasengeschwindigkeit

physikalische Größe bei einer Welle

Die Phasengeschwindigkeit ist die Ausbreitungsgeschwindigkeit gleicher Phasen einer monochromatischen Welle.[1]

Der rote Punkt ist immer am Punkt gleicher Phase (Wellenberg) und bewegt sich mit der Phasengeschwindigkeit der blauen, monochromatischen Welle.
Ein Wellenpaket breitet sich in einem nicht-dispersiven Medium aus (z. B. eine elektromagnetische Welle im Vakuum).
Ein Wellenpaket breitet sich in einem dispersiven Medium aus.

In dispersiven Medien breiten sich Wellen unterschiedlicher Frequenz mit unterschiedlichen Phasengeschwindigkeiten aus. Bei der Ausbreitung von Wellenpaketen (also der Summe mehrerer überlagerter monochromatischer Wellen) in dispersiven Medien sind folglich auch die Phasendifferenzen zwischen einzelnen Komponenten nicht konstant, sondern zeitabhängig: Die Form des Wellenpaktes ändert sich (es „zerfließt“).

In der oberen Abbildung bewegt sich der rote Punkt mit der Phasengeschwindigkeit. Die zweite Abbildung zeigt ein Wellenpaket, dessen Gruppengeschwindigkeit gleich der Phasengeschwindigkeiten der einzelnen Komponenten ist. In der dritten Abbildung sind die Phasengeschwindigkeiten der einzelnen Komponenten unterschiedlich.

Die Phasengeschwindigkeit berechnet sich aus der Wellenlänge (die Strecke, die zurückgelegt wird) und der Periodendauer (die Zeit, die dafür benötigt wird) zu

Aufgrund der Definitionen von Frequenz , Kreisfrequenz und Kreiswellenzahl ergibt sich die äquivalente Darstellung

Die Lichtgeschwindigkeit im Vakuum ist die Obergrenze für die Übertragungsgeschwindigkeit von Energie und Information. Jedoch gibt es zahlreiche Fälle, in denen Phasengeschwindigkeiten oberhalb der Lichtgeschwindigkeit auftreten. Beispiele sind Materiewellen und Wellen in Hohlleitern. Auch in bestimmten Medien kann die Phasengeschwindigkeit bei Lichtpulsen durchaus größer sein als die Lichtgeschwindigkeit.[2]

Die grünen Punkte bewegen sich mit Gruppengeschwindigkeit, der rote mit Phasengeschwindigkeit.

Zusammenhang mit Gruppengeschwindigkeit und Dispersion

Bearbeiten
Bezeichnung Symbol Beziehungen
Amplitude  
  Transversalwelle
  Longitudinalwelle
Wellenvektor   Ausbreitungsrichtung
Kreiswellenzahl    
Wellenlänge    
Kreisfrequenz     Dispersionsrelation
Frequenz    
Phasengeschwindigkeit    
Gruppengeschwindigkeit    
Phasenwinkel    

Zur mathematischen Beschreibung einer Welle in einem speziellen Medium benötigt man ihre Wellenform, Amplitude, Frequenz, Phasenwinkel und die zugehörige Wellengleichung – gegebenenfalls mit Randbedingungen. Einer so eindeutig definierten Welle können trotzdem verschiedene Geschwindigkeiten zugeordnet werden, die nicht mit der Phasengeschwindigkeit verwechselt werden sollten.

Die Geschwindigkeit, mit der eine Welle Energie oder Informationen überträgt, ist die Signalgeschwindigkeit. Diese ist für ein verlustfreies Medium gleich der Gruppengeschwindigkeit, also der Geschwindigkeit eines Wellenpaketes. Ein solches Wellenpaket ist aus monochromatischen Wellen mit unterschiedlichen Frequenzen   zusammengesetzt. Jede dieser monochromatischen Wellen hat eine eigene Phasengeschwindigkeit:

 .

Der funktionale Zusammenhang zwischen Phasengeschwindigkeit und Frequenz wird als Dispersion bezeichnet.

Für elektromagnetische Wellen ist die Phasengeschwindigkeit   und die Gruppengeschwindigkeit   im Vakuum gleich der Lichtgeschwindigkeit  , d. h., das Vakuum ist nicht dispersiv. In Materie ist die Phasengeschwindigkeit dagegen im Allgemeinen abhängig von der Frequenz. Aufgrund der Beziehung für den Brechungsindex   wird hier die Frequenzabhängigkeit des Brechungsindex   als Dispersion bezeichnet.

Beispiele

Bearbeiten

Körperschall

Bearbeiten
 
Lambmoden für zwei verschiedene Materialien mit Poissonzahl
  (z. B. Titan) und   (z. B. Stahl)

In Festkörpern können sich Schallwellen als Körperschall ausbreiten. Die Phasengeschwindigkeiten sind dabei je nach Wellentyp verschieden. Beispielsweise beträgt die Phasengeschwindigkeit der Longitudinalwelle bei Raumtemperatur in Edelstahl etwa 5980 m/s; die Phasengeschwindigkeit der Transversalwelle ist um etwa den Faktor 1,8 kleiner: ca. 3300 m/s. In dünnen Platten existieren noch weitere Wellentypen, sogenannte Lambwellen. Im nebenstehenden Bild entspricht jeder Ast einem Lambwellentyp (Mode). Vertikal ist die Phasengeschwindigkeit   in Einheiten der Transversalwellengeschwindigkeit   dargestellt, horizontal die Frequenz als Produkt von Kreisfrequenz   und Plattendicke   in Einheiten der Transversalwellengeschwindigkeit. Die höheren Moden   existieren erst ab bestimmten Mindestfrequenzen und breiten sich dann mit sehr hohen Phasengeschwindigkeiten aus. Die  -Mode hat für kleine Frequenzen eine verschwindende Phasengeschwindigkeit.

Materiewelle

Bearbeiten

Gemäß dem Welle-Teilchen-Dualismus kann man einem Teilchen, z. B. einem Elektron mit der Energie   und dem Impuls  , eine Wellenlänge   zuordnen und somit eine Phasengeschwindigkeit

 .

Mit Einsteins Formel

 

oder in der Formulierung mit dem Lorentzfaktor  

 

und der Definition des relativistischen Impulses   folgt

 

Hier ist   die Lichtgeschwindigkeit, die höchste Geschwindigkeit, mit der sich Energie oder Informationen ausbreiten können. Die Gruppengeschwindigkeit   ist die Teilchengeschwindigkeit,[3] die immer kleiner als   ist. Daher ist

 .

Die de Broglie-Phasengeschwindigkeit ist also immer größer als die Lichtgeschwindigkeit.[4] Diese sog. superluminale Geschwindigkeit von Materiewellen widerspricht nicht der Relativitätstheorie, da die Signalgeschwindigkeit   ist.

Hohlleiter

Bearbeiten

Auch elektromagnetische Wellen in normalen, zur Leistungsübertragung genutzten Hohlleitern bewegen sich mit Phasengeschwindigkeiten oberhalb der Lichtgeschwindigkeit.[5] Im Wanderwellenbeschleuniger muss die Phasengeschwindigkeit künstlich durch regelmäßig angeordnete leitfähige Blenden auf Werte unterhalb der Lichtgeschwindigkeit verringert werden.

Literatur

Bearbeiten
  • DIN 1311, Blatt 1: Schwingungen und schwingungsfähige Systeme. Teil 1: Grundbegriffe, Einteilung. Ausgabe 2000–2002.

Einzelnachweise

Bearbeiten
  1. Paul A. Tipler, Gene Mosca: Physik. Für Wissenschaftler und Ingenieure. Hrsg.: Dietrich Pelte. 2. Auflage. Spektrum akademischer Verlag, 2007, ISBN 978-3-8274-1164-8.
  2. Schneller als Licht? In: spectrum.de. 24. Mai 2000, abgerufen am 5. Juni 2024.
  3. Gunnar Lindström, Rudolf Langkau, Wolfgang Scobel: Physik kompakt 3: Quantenphysik und Statistische Physik. Springer, 2013, ISBN 3-642-56017-2, S. 54 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Wolfgang Demtröder: Experimentalphysik 3. Atome, Moleküle und Festkörper. Springer DE, 2010, ISBN 978-3-642-03911-9, S. 97 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. Peter Schmüser: Theoretische Physik Für Studierende Des Lehramts 1: Quantenmechanik. Springer DE, 2012, ISBN 978-3-642-25395-9, S. 125 (eingeschränkte Vorschau in der Google-Buchsuche).