default search action
Mehdi Elahi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j20]Elham Motamedi, Danial Khosh Kholgh, Sorush Saghari, Mehdi Elahi, Francesco Barile, Marko Tkalcic:
Predicting movies' eudaimonic and hedonic scores: A machine learning approach using metadata, audio and visual features. Inf. Process. Manag. 61(2): 103610 (2024) - [j19]Fatemeh Elahi, Mahmood Fazlali, Hadi Tabatabaee Malazi, Mehdi Elahi:
Parallel Fractional Stochastic Gradient Descent With Adaptive Learning for Recommender Systems. IEEE Trans. Parallel Distributed Syst. 35(3): 470-483 (2024) - [c59]Mahsa Dehghani, Mehdi Elahi, Mahdi Fazeli, Ahmad Patooghy:
Advancing IoT Security Through Run-time Monitoring & Post-Execution Verification. ISVLSI 2024: 825-829 - [c58]Bilal Mahmood, Mehdi Elahi, Samia Touileb, L'ubos Steskal, Christoph Trattner:
Incorporating Editorial Feedback in the Evaluation of News Recommender Systems. UMAP (Adjunct Publication) 2024 - [i7]Mohamed R. Elshamy, Mehdi Elahi, Ahmad Patooghy, Abdel-Hameed A. Badawy:
Cluster-BPI: Efficient Fine-Grain Blind Power Identification for Defending against Hardware Thermal Trojans in Multicore SoCs. CoRR abs/2409.18921 (2024) - [i6]Nasim Sonboli, Sipei Li, Mehdi Elahi, Asia Biega:
The trade-off between data minimization and fairness in collaborative filtering. CoRR abs/2410.07182 (2024) - 2023
- [j18]Ahmad Patooghy, Mehdi Elahi, Maral Filvan Torkaman, Sara Sezavar Dokhtfaroughi, Ramin Rajaei:
Addressing Benign and Malicious Crosstalk in Modern System-on-Chips. IEEE Access 11: 142263-142275 (2023) - [j17]Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Mourad Oussalah, Sorush Saghari:
Hybrid recommendation by incorporating the sentiment of product reviews. Inf. Sci. 625: 738-756 (2023) - [j16]Stefano Savian, Mehdi Elahi, Andrea Janes, Tammam Tillo:
Benchmarking equivariance for Deep Learning based optical flow estimators. Signal Process. Image Commun. 111: 116892 (2023) - [c57]Ayoub El Majjodi, Alain D. Starke, Mehdi Elahi, Christoph Trattner:
The Interplay between Food Knowledge, Nudges, and Preference Elicitation Methods Determines the Evaluation of a Recipe Recommender System. IntRS@RecSys 2023: 1-18 - [c56]Andreas Lommatzsch, Benjamin Kille, Özlem Özgöbek, Mehdi Elahi, Duc-Tien Dang-Nguyen:
The Relation between Texts and Images in News: News Images in MediaEval 2023. MediaEval 2023 - [c55]Anastasiia Klimashevskaia, Mehdi Elahi, Dietmar Jannach, Lars Skjærven, Astrid Tessem, Christoph Trattner:
Evaluating The Effects of Calibrated Popularity Bias Mitigation: A Field Study. RecSys 2023: 1084-1089 - [c54]Anastasiia Klimashevskaia, Mehdi Elahi, Christoph Trattner:
Addressing Popularity Bias in Recommender Systems: An Exploration of Self-Supervised Learning Models. UMAP (Adjunct Publication) 2023: 7-11 - [i5]Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, Christoph Trattner:
A Survey on Popularity Bias in Recommender Systems. CoRR abs/2308.01118 (2023) - 2022
- [j15]Mehdi Elahi, Dietmar Jannach, Lars Skjærven, Erik Knudsen, Helle Sjøvaag, Kristian Tolonen, Øyvind Holmstad, Igor Pipkin, Eivind Throndsen, Agnes Stenbom, Eivind Fiskerud, Adrian Oesch, Loek Vredenberg, Christoph Trattner:
Towards responsible media recommendation. AI Ethics 2(1): 103-114 (2022) - [j14]Christoph Trattner, Dietmar Jannach, Enrico Motta, Irene Costera Meijer, Nicholas Diakopoulos, Mehdi Elahi, Andreas L. Opdahl, Bjørnar Tessem, Njål Borch, Morten Fjeld, Lilja Øvrelid, Koenraad De Smedt, Hallvard Moe:
Responsible media technology and AI: challenges and research directions. AI Ethics 2(4): 585-594 (2022) - [j13]Shahpar Yakhchi, Amin Beheshti, Seyed Mohssen Ghafari, Imran Razzak, Mehmet A. Orgun, Mehdi Elahi:
A Convolutional Attention Network for Unifying General and Sequential Recommenders. Inf. Process. Manag. 59(1): 102755 (2022) - [c53]Anastasiia Klimashevskaia, Mehdi Elahi, Dietmar Jannach, Christoph Trattner, Lars Skjærven:
Mitigating Popularity Bias in Recommendation: Potential and Limits of Calibration Approaches. BIAS 2022: 82-90 - [c52]Van Thanh Le, Nabil El Ioini, Claus Pahl, Mehdi Elahi:
Capacity-Based Trust System in Untrusted MEC Environments. IOTSMS 2022: 1-8 - [c51]Benjamin Kille, Andreas Lommatzsch, Özlem Özgöbek, Mehdi Elahi, Duc-Tien Dang-Nguyen:
News Images in MediaEval 2022. MediaEval 2022 - [c50]Himan Abdollahpouri, Shaghayegh Sahebi, Mehdi Elahi, Masoud Mansoury, Babak Loni, Zahra Nazari, Maria Dimakopoulou:
MORS 2022: The Second Workshop on Multi-Objective Recommender Systems. RecSys 2022: 658-660 - [e2]Himan Abdollahpouri, Shaghayegh Sahebi, Mehdi Elahi, Masoud Mansoury, Babak Loni, Zahra Nazari, Maria Dimakopoulou:
Proceedings of the 2nd Workshop on Multi-Objective Recommender Systems co-located with 16th ACM Conference on Recommender Systems (RecSys 2022), Seattle, WA, USA, 18th-23rd September 2022. CEUR Workshop Proceedings 3268, CEUR-WS.org 2022 [contents] - 2021
- [j12]Naieme Hazrati, Mehdi Elahi:
Addressing the New Item problem in video recommender systems by incorporation of visual features with restricted Boltzmann machines. Expert Syst. J. Knowl. Eng. 38(3) (2021) - [j11]Mehdi Elahi, Alain Starke, Nabil El Ioini, Anna Alexander Lambrix, Christoph Trattner:
Developing and Evaluating a University Recommender System. Frontiers Artif. Intell. 4: 796268 (2021) - [j10]Mehdi Elahi, Danial Khosh Kholgh, Mohammad Sina Kiarostami, Sorush Saghari, Shiva Parsa Rad, Marko Tkalcic:
Investigating the impact of recommender systems on user-based and item-based popularity bias. Inf. Process. Manag. 58(5): 102655 (2021) - [j9]Claudio A. Ardagna, Rasool Asal, Ernesto Damiani, Nabil El Ioini, Mehdi Elahi, Claus Pahl:
From Trustworthy Data to Trustworthy IoT: A Data Collection Methodology Based on Blockchain. ACM Trans. Cyber Phys. Syst. 5(1): 11:1-11:26 (2021) - [c49]Tord Kvifte, Mehdi Elahi, Christoph Trattner:
Hybrid Recommendation of Movies Based on Deep Content Features. ICSOC Workshops 2021: 32-45 - [c48]Benjamin Kille, Andreas Lommatzsch, Özlem Özgöbek, Mehdi Elahi, Duc-Tien Dang-Nguyen:
News Images in MediaEval 2021. MediaEval 2021 - [c47]Himan Abdollahpouri, Mehdi Elahi, Masoud Mansoury, Shaghayegh Sahebi, Zahra Nazari, Allison Chaney, Babak Loni:
MORS 2021: 1st Workshop on Multi-Objective Recommender Systems. RecSys 2021: 787-788 - [c46]Himan Abdollahpouri, Mehdi Elahi, Masoud Mansoury, Shaghayegh Sahebi, Zahra Nazari, Allison Chaney, Babak Loni:
MORS 2021 - 1st Workshop on Multi-Objective Recommender Systems. MORS@RecSys 2021 - [c45]Mehdi Elahi, Himan Abdollahpouri, Masoud Mansoury, Helma Torkamaan:
Beyond Algorithmic Fairness in Recommender Systems. UMAP (Adjunct Publication) 2021: 41-46 - [c44]Mehdi Elahi, Farshad Bakhshandegan Moghaddam, Reza Hosseini, Mohammad Hossein Rimaz, Nabil El Ioini, Marko Tkalcic, Christoph Trattner, Tammam Tillo:
Recommending Videos in Cold Start With Automatic Visual Tags. UMAP (Adjunct Publication) 2021: 54-60 - [e1]Himan Abdollahpouri, Mehdi Elahi, Masoud Mansoury, Shaghayegh Sahebi, Zahra Nazari, Allison Chaney, Babak Loni:
Proceedings of the 1st Workshop on Multi-Objective Recommender Systems (MORS 2021) co-located with 15th ACM Conference on Recommender Systems (RecSys 2021), Amsterdam, The Netherlands, September 25, 2021. CEUR Workshop Proceedings 2959, CEUR-WS.org 2021 [contents] - 2020
- [c43]Naieme Hazrati, Mehdi Elahi, Francesco Ricci:
Simulating the Impact of Recommender Systems on the Evolution of Collective Users' Choices. HT 2020: 207-212 - [c42]Mehdi Elahi, Reza Hosseini, Mohammad Hossein Rimaz, Farshad Bakhshandegan Moghaddam, Christoph Trattner:
Visually-Aware Video Recommendation in the Cold Start. HT 2020: 225-229 - [c41]Mohammad Hossein Rimaz, Reza Hosseini, Mehdi Elahi, Farshad Bakhshandegan Moghaddam:
AudioLens: Audio-Aware Video Recommendation for Mitigating New Item Problem. ICSOC Workshops 2020: 365-378 - [c40]Mehdi Elahi, Nabil El Ioini, Anna Alexander Lambrix, Mouzhi Ge:
Exploring Personalized University Ranking and Recommendation. UMAP (Adjunct Publication) 2020: 6-10 - [c39]Ayoub El Majjodi, Mehdi Elahi, Nabil El Ioini, Christoph Trattner:
Towards Generating Personalized Country Recommendation. UMAP (Adjunct Publication) 2020: 71-76 - [p2]Stefano Savian, Mehdi Elahi, Tammam Tillo:
Optical Flow Estimation with Deep Learning, a Survey on Recent Advances. Deep Biometrics 2020: 257-287
2010 – 2019
- 2019
- [c38]Yashar Deldjoo, Markus Schedl, Mehdi Elahi:
Movie Genome Recommender: A Novel Recommender System Based on Multimedia Content. CBMI 2019: 1-4 - [c37]Marko Tkalcic, Nima Maleki, Matevz Pesek, Mehdi Elahi, Francesco Ricci, Matija Marolt:
Prediction of music pairwise preferences from facial expressions. IUI 2019: 150-159 - [c36]Ahmad Patooghy, Maral Filvan Torkaman, Mehdi Elahi:
Your hardware is all wired up!: attacking network-on-chips via crosstalk channel. NoCArc@MICRO 2019: 7:1-7:6 - [c35]Naieme Hazrati, Mehdi Elahi, Francesco Ricci:
Analysing Recommender Systems Impact on Users' Choices. ImpactRS@RecSys 2019 - [c34]Stefano Savian, Mehdi Elahi, Tammam Tillo:
Benchmarking The Imbalanced Behavior of Deep Learning Based Optical Flow Estimators. SITIS 2019: 151-158 - [c33]Farshad Bakhshandegan Moghaddam, Mehdi Elahi, Reza Hosseini, Christoph Trattner, Marko Tkalcic:
Predicting Movie Popularity and Ratings with Visual Features. SMAP 2019: 1-6 - [c32]Mohammad Hossein Rimaz, Mehdi Elahi, Farshad Bakhshandegan Moghaddam, Christoph Trattner, Reza Hosseini, Marko Tkalcic:
Exploring the Power of Visual Features for the Recommendation of Movies. UMAP 2019: 303-308 - 2018
- [j8]Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, Mehdi Elahi:
Current challenges and visions in music recommender systems research. Int. J. Multim. Inf. Retr. 7(2): 95-116 (2018) - [j7]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi:
Using visual features based on MPEG-7 and deep learning for movie recommendation. Int. J. Multim. Inf. Retr. 7(4): 207-219 (2018) - [c31]Dario Cavada, Mehdi Elahi, David Massimo, Stefano Maule, Elena Not, Francesco Ricci, Adriano Venturini:
Tangible Tourism with the Internet of Things. ENTER 2018: 349-361 - [c30]Mehdi Elahi, Rosella Gennari, Alessandra Melonio, Francesco Ricci:
It Takes Two, Baby: Style and Tangibles for Recommending and Interacting with Videos. IIR 2018 - [p1]Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov, Francesco Ricci:
User Preference Elicitation, Rating Sparsity and Cold Start. Collaborative Recommendations 2018: 253-294 - [i4]Paolo Cremonesi, Chiara Francalanci, Alessandro Poli, Roberto Pagano, Luca Mazzoni, Alberto Maggioni, Mehdi Elahi:
Social Network based Short-Term Stock Trading System. CoRR abs/1801.05295 (2018) - 2017
- [j6]Paolo Cremonesi, Mehdi Elahi, Franca Garzotto:
User interface patterns in recommendation-empowered content intensive multimedia applications. Multim. Tools Appl. 76(4): 5275-5309 (2017) - [c29]Mehdi Elahi, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Leonardo Cella, Stefano Cereda, Paolo Cremonesi:
Exploring the Semantic Gap for Movie Recommendations. RecSys 2017: 326-330 - [c28]Marko Tkalcic, Nima Maleki, Matevz Pesek, Mehdi Elahi, Francesco Ricci, Matija Marolt:
A Research Tool for User Preferences Elicitation with Facial Expressions. RecSys 2017: 353-354 - [c27]Fabian Abel, Yashar Deldjoo, Mehdi Elahi, Daniel Kohlsdorf:
RecSys Challenge 2017: Offline and Online Evaluation. RecSys 2017: 372-373 - [c26]David Massimo, Mehdi Elahi, Francesco Ricci:
Learning User Preferences by Observing User-Items Interactions in an IoT Augmented Space. UMAP (Adjunct Publication) 2017: 35-40 - [c25]Hanna Schäfer, Mehdi Elahi, David Elsweiler, Georg Groh, Morgan Harvey, Bernd Ludwig, Francesco Ricci, Alan Said:
User Nutrition Modelling and Recommendation: Balancing Simplicity and Complexity. UMAP (Adjunct Publication) 2017: 93-96 - [c24]David Massimo, Mehdi Elahi, Mouzhi Ge, Francesco Ricci:
Item Contents Good, User Tags Better: Empirical Evaluation of a Food Recommender System. UMAP 2017: 373-374 - [i3]Roberto Pagano, Massimo Quadrana, Mehdi Elahi, Paolo Cremonesi:
Toward Active Learning in Cross-domain Recommender Systems. CoRR abs/1701.02021 (2017) - [i2]Yashar Deldjoo, Massimo Quadrana, Mehdi Elahi, Paolo Cremonesi:
Using Mise-En-Scène Visual Features based on MPEG-7 and Deep Learning for Movie Recommendation. CoRR abs/1704.06109 (2017) - [i1]Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, Mehdi Elahi:
Current Challenges and Visions in Music Recommender Systems Research. CoRR abs/1710.03208 (2017) - 2016
- [j5]Mehdi Elahi, Francesco Ricci, Neil Rubens:
A survey of active learning in collaborative filtering recommender systems. Comput. Sci. Rev. 20: 29-50 (2016) - [j4]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Garzotto, Pietro Piazzolla, Massimo Quadrana:
Content-Based Video Recommendation System Based on Stylistic Visual Features. J. Data Semant. 5(2): 99-113 (2016) - [j3]Ignacio Fernández-Tobías, Matthias Braunhofer, Mehdi Elahi, Francesco Ricci, Iván Cantador:
Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User Adapt. Interact. 26(2-3): 221-255 (2016) - [c23]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Garzotto, Pietro Piazzolla:
Recommending Movies Based on Mise-en-Scene Design. CHI Extended Abstracts 2016: 1540-1547 - [c22]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Farshad Bakhshandegan Moghaddam, Andrea Luigi Edoardo Caielli:
How to Combine Visual Features with Tags to Improve Movie Recommendation Accuracy? EC-Web 2016: 34-45 - [c21]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi:
Using Visual Features and Latent Factors for Movie Recommendation. CBRecSys@RecSys 2016: 15-18 - 2015
- [c20]Paolo Cremonesi, Mehdi Elahi, Franca Garzotto:
Interaction Design Patterns in Recommender Systems. CHItaly 2015: 66-73 - [c19]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi, Franca Garzotto:
Toward Effective Movie Recommendations Based on Mise-en-Scène Film Styles. CHItaly 2015: 162-165 - [c18]Mona Naseri, Mehdi Elahi, Paolo Cremonesi:
Investigating the Decision Making Process of Users based on the PoliMovie Dataset. DMRS 2015: 41-44 - [c17]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi:
Toward Building a Content-Based Video Recommendation System Based on Low-Level Features. EC-Web 2015: 45-56 - [c16]Mouzhi Ge, Mehdi Elahi, Ignacio Fernández-Tobías, Francesco Ricci, David Massimo:
Using Tags and Latent Factors in a Food Recommender System. Digital Health 2015: 105-112 - [c15]Matthias Braunhofer, Mehdi Elahi, Francesco Ricci:
User Personality and the New User Problem in a Context-Aware Point of Interest Recommender System. ENTER 2015: 537-549 - [c14]Mehdi Elahi, Mouzhi Ge, Francesco Ricci, Ignacio Fernández-Tobías, Shlomo Berkovsky, David Massimo:
Interaction Design in a Mobile Food Recommender System. IntRS@RecSys 2015: 49-52 - [r1]Neil Rubens, Mehdi Elahi, Masashi Sugiyama, Dain Kaplan:
Active Learning in Recommender Systems. Recommender Systems Handbook 2015: 809-846 - 2014
- [j2]Matthias Braunhofer, Mehdi Elahi, Francesco Ricci:
Techniques for cold-starting context-aware mobile recommender systems for tourism. Intelligenza Artificiale 8(2): 129-143 (2014) - [c13]Matthias Braunhofer, Mehdi Elahi, Francesco Ricci:
Usability Assessment of a Context-Aware and Personality-Based Mobile Recommender System. EC-Web 2014: 77-88 - [c12]Mehdi Elahi, Francesco Ricci, Neil Rubens:
Active Learning in Collaborative Filtering Recommender Systems. EC-Web 2014: 113-124 - [c11]Matthias Braunhofer, Mehdi Elahi, Francesco Ricci, Thomas Schievenin:
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management. ENTER 2014: 87-100 - [c10]Matthias Braunhofer, Mehdi Elahi, Mouzhi Ge, Francesco Ricci:
Context Dependent Preference Acquisition with Personality-Based Active Learning in Mobile Recommender Systems. HCI (15) 2014: 105-116 - [c9]Mehdi Elahi, Mouzhi Ge, Francesco Ricci, David Massimo, Shlomo Berkovsky:
Interactive Food Recommendation for Groups. RecSys Posters 2014 - [c8]Matthias Braunhofer, Mehdi Elahi, Francesco Ricci:
STS: A Context-Aware Mobile Recommender System for Places of Interest. UMAP Workshops 2014 - 2013
- [j1]Mehdi Elahi, Francesco Ricci, Neil Rubens:
Active learning strategies for rating elicitation in collaborative filtering: A system-wide perspective. ACM Trans. Intell. Syst. Technol. 5(1): 13:1-13:33 (2013) - [c7]Matthias Braunhofer, Mehdi Elahi, Mouzhi Ge, Francesco Ricci, Thomas Schievenin:
STS: Design of Weather-Aware Mobile Recommender Systems in Tourism. AI*HCI@AI*IA 2013 - [c6]Mehdi Elahi, Matthias Braunhofer, Francesco Ricci, Marko Tkalcic:
Personality-Based Active Learning for Collaborative Filtering Recommender Systems. AI*IA 2013: 360-371 - 2012
- [c5]Mehdi Elahi, Francesco Ricci, Neil Rubens:
Adapting to Natural Rating Acquisition with Combined Active Learning Strategies. ISMIS 2012: 254-263 - 2011
- [c4]Mehdi Elahi, Valdemaras Repsys, Francesco Ricci:
Rating Elicitation Strategies for Collaborative Filtering. EC-Web 2011: 160-171 - [c3]Mehdi Elahi:
Adaptive Active Learning in Recommender Systems. UMAP 2011: 414-417 - 2010
- [c2]Mehdi Elahi:
Context-aware intelligent recommender system. IUI 2010: 407-408
2000 – 2009
- 2009
- [c1]Magnus Jändel, Mehdi Elahi:
Tribal taste: mobile multiagent recommender system. IUI 2009: 489-490
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 21:42 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint