default search action
Huishuai Zhang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa, Jian Yin, Huishuai Zhang:
Selective Pre-training for Private Fine-tuning. Trans. Mach. Learn. Res. 2024 (2024) - [c39]Zhuocheng Gong, Ang Lv, Jian Guan, Wei Wu, Huishuai Zhang, Minlie Huang, Dongyan Zhao, Rui Yan:
Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules. EMNLP 2024: 20924-20938 - [c38]Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A. Inan, Harsha Nori, Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, Sergey Yekhanin:
Differentially Private Synthetic Data via Foundation Model APIs 2: Text. ICML 2024 - [c37]Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, Tie-Yan Liu, Zhi-Quan Luo, Wei Chen:
Provable Adaptivity of Adam under Non-uniform Smoothness. KDD 2024: 2960-2969 - [i54]Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A. Inan, Harsha Nori, Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, Sergey Yekhanin:
Differentially Private Synthetic Data via Foundation Model APIs 2: Text. CoRR abs/2403.01749 (2024) - [i53]Bohan Wang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, Wei Chen:
On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond. CoRR abs/2403.15146 (2024) - [i52]Chao Zhou, Huishuai Zhang, Jiang Bian, Weiming Zhang, Nenghai Yu:
\copyright Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model. CoRR abs/2404.11962 (2024) - [i51]Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-Qing Chen, Furu Wei, Huishuai Zhang, Dongyan Zhao:
xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token. CoRR abs/2405.13792 (2024) - [i50]Minseon Kim, Hyomin Lee, Boqing Gong, Huishuai Zhang, Sung Ju Hwang:
Automatic Jailbreaking of the Text-to-Image Generative AI Systems. CoRR abs/2405.16567 (2024) - [i49]Yiduo Guo, Jie Fu, Huishuai Zhang, Dongyan Zhao, Yikang Shen:
Efficient Continual Pre-training by Mitigating the Stability Gap. CoRR abs/2406.14833 (2024) - [i48]Zhuocheng Gong, Ang Lv, Jian Guan, Junxi Yan, Wei Wu, Huishuai Zhang, Minlie Huang, Dongyan Zhao, Rui Yan:
Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules. CoRR abs/2407.06677 (2024) - [i47]Haowei Du, Huishuai Zhang, Dongyan Zhao:
Evidence-Enhanced Triplet Generation Framework for Hallucination Alleviation in Generative Question Answering. CoRR abs/2408.15037 (2024) - [i46]Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, Dongyan Zhao:
ReMamba: Equip Mamba with Effective Long-Sequence Modeling. CoRR abs/2408.15496 (2024) - [i45]Yueqian Wang, Jianxin Liang, Yuxuan Wang, Huishuai Zhang, Dongyan Zhao:
Understanding Multimodal Hallucination with Parameter-Free Representation Alignment. CoRR abs/2409.01151 (2024) - 2023
- [j8]Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang:
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent. Trans. Mach. Learn. Res. 2023 (2023) - [c36]Junyao Gao, Xinyang Jiang, Huishuai Zhang, Yifan Yang, Shuguang Dou, Dongsheng Li, Duoqian Miao, Cheng Deng, Cairong Zhao:
Similarity Distribution Based Membership Inference Attack on Person Re-identification. AAAI 2023: 14820-14828 - [c35]Huishuai Zhang, Da Yu, Yiping Lu, Di He:
Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks. AISTATS 2023: 2792-2804 - [c34]Bohan Wang, Huishuai Zhang, Zhiming Ma, Wei Chen:
Convergence of AdaGrad for Non-convex Objectives: Simple Proofs and Relaxed Assumptions. COLT 2023: 161-190 - [c33]Hangting Ye, Zhining Liu, Xinyi Shen, Wei Cao, Shun Zheng, Xiaofan Gui, Huishuai Zhang, Yi Chang, Jiang Bian:
UADB: Unsupervised Anomaly Detection Booster. ICDE 2023: 2593-2606 - [c32]Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs, Nenghai Yu, Jiang Bian:
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping. ICLR 2023 - [c31]Quanlin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, Di He:
Denoising Masked Autoencoders Help Robust Classification. ICLR 2023 - [c30]Kun Song, Huimin Ma, Bochao Zou, Huishuai Zhang, Weiran Huang:
FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained Models in Few-Shot Learning. NeurIPS 2023 - [c29]Puheng Li, Zhong Li, Huishuai Zhang, Jiang Bian:
On the Generalization Properties of Diffusion Models. NeurIPS 2023 - [c28]Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, Wei Chen:
Closing the gap between the upper bound and lower bound of Adam's iteration complexity. NeurIPS 2023 - [c27]Kaipeng Zheng, Huishuai Zhang, Weiran Huang:
DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable Kendall's Rank Correlation. NeurIPS 2023 - [i44]Shufang Xie, Huishuai Zhang, Junliang Guo, Xu Tan, Jiang Bian, Hany Hassan Awadalla, Arul Menezes, Tao Qin, Rui Yan:
ResiDual: Transformer with Dual Residual Connections. CoRR abs/2304.14802 (2023) - [i43]Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa, Jian Yin, Huishuai Zhang:
Selective Pre-training for Private Fine-tuning. CoRR abs/2305.13865 (2023) - [i42]Bohan Wang, Huishuai Zhang, Zhi-Ming Ma, Wei Chen:
Convergence of AdaGrad for Non-convex Objectives: Simple Proofs and Relaxed Assumptions. CoRR abs/2305.18471 (2023) - [i41]Hangting Ye, Zhining Liu, Xinyi Shen, Wei Cao, Shun Zheng, Xiaofan Gui, Huishuai Zhang, Yi Chang, Jiang Bian:
UADB: Unsupervised Anomaly Detection Booster. CoRR abs/2306.01997 (2023) - [i40]Jingwen Fu, Bohan Wang, Huishuai Zhang, Zhizheng Zhang, Wei Chen, Nanning Zheng:
When and Why Momentum Accelerates SGD: An Empirical Study. CoRR abs/2306.09000 (2023) - [i39]Zihao Jiang, Yunkai Dang, Dong Pang, Huishuai Zhang, Weiran Huang:
FILM: How can Few-Shot Image Classification Benefit from Pre-Trained Language Models? CoRR abs/2307.04114 (2023) - [i38]Kaipeng Zheng, Huishuai Zhang, Weiran Huang:
DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable Kendall's Rank Correlation. CoRR abs/2307.15317 (2023) - [i37]Kun Song, Huimin Ma, Bochao Zou, Huishuai Zhang, Weiran Huang:
FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained Models in Few-Shot Learning. CoRR abs/2310.15105 (2023) - [i36]Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, Wei Chen:
Closing the Gap Between the Upper Bound and the Lower Bound of Adam's Iteration Complexity. CoRR abs/2310.17998 (2023) - [i35]Puheng Li, Zhong Li, Huishuai Zhang, Jiang Bian:
On the Generalization Properties of Diffusion Models. CoRR abs/2311.01797 (2023) - [i34]Prin Phunyaphibarn, Junghyun Lee, Bohan Wang, Huishuai Zhang, Chulhee Yun:
Large Catapults in Momentum Gradient Descent with Warmup: An Empirical Study. CoRR abs/2311.15051 (2023) - [i33]Kai Qiu, Huishuai Zhang, Zhirong Wu, Stephen Lin:
Exploring Transferability for Randomized Smoothing. CoRR abs/2312.09020 (2023) - 2022
- [j7]Yi Zhou, Yingbin Liang, Huishuai Zhang:
Understanding generalization error of SGD in nonconvex optimization. Mach. Learn. 111(1): 345-375 (2022) - [j6]Huishuai Zhang, Da Yu, Mingyang Yi, Wei Chen, Tie-Yan Liu:
Stabilize deep ResNet with a sharp scaling factor τ. Mach. Learn. 111(9): 3359-3392 (2022) - [c26]Tianyu Pang, Huishuai Zhang, Di He, Yinpeng Dong, Hang Su, Wei Chen, Jun Zhu, Tie-Yan Liu:
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart. CVPR 2022: 15202-15212 - [c25]Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, Huishuai Zhang:
Differentially Private Fine-tuning of Language Models. ICLR 2022 - [c24]Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, Masashi Sugiyama:
Adaptive Inertia: Disentangling the Effects of Adaptive Learning Rate and Momentum. ICML 2022: 24430-24459 - [c23]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Availability Attacks Create Shortcuts. KDD 2022: 2367-2376 - [c22]Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma, Tie-Yan Liu:
Does Momentum Change the Implicit Regularization on Separable Data? NeurIPS 2022 - [i32]Jingwei Yi, Fangzhao Wu, Huishuai Zhang, Bin Zhu, Tao Qi, Guangzhong Sun, Xing Xie:
Robust Quantity-Aware Aggregation for Federated Learning. CoRR abs/2205.10848 (2022) - [i31]Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang:
Per-Instance Privacy Accounting for Differentially Private Stochastic Gradient Descent. CoRR abs/2206.02617 (2022) - [i30]Huishuai Zhang, Da Yu, Yiping Lu, Di He:
Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks. CoRR abs/2206.04316 (2022) - [i29]Xiaodong Yang, Huishuai Zhang, Wei Chen, Tie-Yan Liu:
Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization. CoRR abs/2206.13033 (2022) - [i28]Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Zhi-Ming Ma, Tie-Yan Liu, Wei Chen:
Provable Adaptivity in Adam. CoRR abs/2208.09900 (2022) - [i27]Quanlin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, Di He:
Denoising Masked AutoEncoders are Certifiable Robust Vision Learners. CoRR abs/2210.06983 (2022) - [i26]Junyao Gao, Xinyang Jiang, Huishuai Zhang, Yifan Yang, Shuguang Dou, Dongsheng Li, Duoqian Miao, Cheng Deng, Cairong Zhao:
Similarity Distribution based Membership Inference Attack on Person Re-identification. CoRR abs/2211.15918 (2022) - [i25]Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs, Nenghai Yu, Jiang Bian:
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping. CoRR abs/2212.01539 (2022) - 2021
- [c21]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
How Does Data Augmentation Affect Privacy in Machine Learning? AAAI 2021: 10746-10753 - [c20]Da Yu, Huishuai Zhang, Wei Chen, Tie-Yan Liu:
Do not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning. ICLR 2021 - [c19]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Large Scale Private Learning via Low-rank Reparametrization. ICML 2021: 12208-12218 - [c18]Bohan Wang, Huishuai Zhang, Jieyu Zhang, Qi Meng, Wei Chen, Tie-Yan Liu:
Optimizing Information-theoretical Generalization Bound via Anisotropic Noise of SGLD. NeurIPS 2021: 26080-26090 - [i24]Mingyang Yi, Huishuai Zhang, Wei Chen, Zhi-Ming Ma, Tie-Yan Liu:
BN-invariant sharpness regularizes the training model to better generalization. CoRR abs/2101.02944 (2021) - [i23]Da Yu, Huishuai Zhang, Wei Chen, Tie-Yan Liu:
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning. CoRR abs/2102.12677 (2021) - [i22]Tianyu Pang, Huishuai Zhang, Di He, Yinpeng Dong, Hang Su, Wei Chen, Jun Zhu, Tie-Yan Liu:
Adversarial Training with Rectified Rejection. CoRR abs/2105.14785 (2021) - [i21]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Large Scale Private Learning via Low-rank Reparametrization. CoRR abs/2106.09352 (2021) - [i20]Yichi Zhou, Shihong Song, Huishuai Zhang, Jun Zhu, Wei Chen, Tie-Yan Liu:
Regularized OFU: an Efficient UCB Estimator forNon-linear Contextual Bandit. CoRR abs/2106.15128 (2021) - [i19]Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma:
Momentum Doesn't Change the Implicit Bias. CoRR abs/2110.03891 (2021) - [i18]Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, Huishuai Zhang:
Differentially Private Fine-tuning of Language Models. CoRR abs/2110.06500 (2021) - [i17]Bohan Wang, Huishuai Zhang, Jieyu Zhang, Qi Meng, Wei Chen, Tie-Yan Liu:
Optimizing Information-theoretical Generalization Bounds via Anisotropic Noise in SGLD. CoRR abs/2110.13750 (2021) - [i16]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Indiscriminate Poisoning Attacks Are Shortcuts. CoRR abs/2111.00898 (2021) - 2020
- [j5]Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen, Tie-Yan Liu:
Convergence of Distributed Stochastic Variance Reduced Methods Without Sampling Extra Data. IEEE Trans. Signal Process. 68: 3976-3989 (2020) - [c17]Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, Tie-Yan Liu:
On Layer Normalization in the Transformer Architecture. ICML 2020: 10524-10533 - [c16]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Gradient Perturbation is Underrated for Differentially Private Convex Optimization. IJCAI 2020: 3117-3123 - [i15]Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, Tie-Yan Liu:
On Layer Normalization in the Transformer Architecture. CoRR abs/2002.04745 (2020) - [i14]Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, Masashi Sugiyama:
Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia. CoRR abs/2006.15815 (2020) - [i13]Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu:
Membership Inference with Privately Augmented Data Endorses the Benign while Suppresses the Adversary. CoRR abs/2007.10567 (2020) - [i12]Jerry Li, Aaron Sidford, Kevin Tian, Huishuai Zhang:
Well-Conditioned Methods for Ill-Conditioned Systems: Linear Regression with Semi-Random Noise. CoRR abs/2008.01722 (2020)
2010 – 2019
- 2019
- [c15]Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Nenghai Yu, Tie-Yan Liu:
Capacity Control of ReLU Neural Networks by Basis-Path Norm. AAAI 2019: 5925-5932 - [c14]Qi Meng, Shuxin Zheng, Huishuai Zhang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Nenghai Yu, Tie-Yan Liu:
G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space. ICLR (Poster) 2019 - [c13]Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, Vahid Tarokh:
SGD Converges to Global Minimum in Deep Learning via Star-convex Path. ICLR (Poster) 2019 - [c12]Mingyang Yi, Huishuai Zhang, Wei Chen, Zhi-Ming Ma, Tie-Yan Liu:
BN-invariant Sharpness Regularizes the Training Model to Better Generalization. IJCAI 2019: 4164-4170 - [i11]Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, Vahid Tarokh:
SGD Converges to Global Minimum in Deep Learning via Star-convex Path. CoRR abs/1901.00451 (2019) - [i10]Huishuai Zhang, Da Yu, Wei Chen, Tie-Yan Liu:
Training Over-parameterized Deep ResNet Is almost as Easy as Training a Two-layer Network. CoRR abs/1903.07120 (2019) - [i9]Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen, Tie-Yan Liu:
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data. CoRR abs/1905.12648 (2019) - [i8]Da Yu, Huishuai Zhang, Wei Chen, Tie-Yan Liu, Jian Yin:
Gradient Perturbation is Underrated for Differentially Private Convex Optimization. CoRR abs/1911.11363 (2019) - 2018
- [j4]Huishuai Zhang, Yuejie Chi, Yingbin Liang:
Median-Truncated Nonconvex Approach for Phase Retrieval With Outliers. IEEE Trans. Inf. Theory 64(11): 7287-7310 (2018) - [c11]Huishuai Zhang, Wei Chen, Tie-Yan Liu:
On the Local Hessian in Back-propagation. NeurIPS 2018: 6521-6531 - [i7]Yi Zhou, Yingbin Liang, Huishuai Zhang:
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization. CoRR abs/1802.06903 (2018) - [i6]Huishuai Zhang, Wei Chen, Tie-Yan Liu:
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation. CoRR abs/1802.09750 (2018) - [i5]Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Nenghai Yu, Tie-Yan Liu:
Capacity Control of ReLU Neural Networks by Basis-path Norm. CoRR abs/1809.07122 (2018) - 2017
- [j3]Huishuai Zhang, Yingbin Liang, Yuejie Chi:
A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms. J. Mach. Learn. Res. 18: 141:1-141:35 (2017) - [j2]Huishuai Zhang, Yingbin Liang, Lifeng Lai, Shlomo Shamai Shitz:
Multi-Key Generation Over a Cellular Model With a Helper. IEEE Trans. Inf. Theory 63(6): 3804-3822 (2017) - [i4]Yuanxin Li, Yuejie Chi, Huishuai Zhang, Yingbin Liang:
Nonconvex Low-Rank Matrix Recovery with Arbitrary Outliers via Median-Truncated Gradient Descent. CoRR abs/1709.08114 (2017) - [i3]Huishuai Zhang, Caiming Xiong, James Bradbury, Richard Socher:
Block-diagonal Hessian-free Optimization for Training Neural Networks. CoRR abs/1712.07296 (2017) - 2016
- [c10]Yi Zhou, Huishuai Zhang, Yingbin Liang:
On Compressive orthonormal Sensing. Allerton 2016: 299-305 - [c9]Yi Zhou, Huishuai Zhang, Yingbin Liang:
Geometrical properties and accelerated gradient solvers of non-convex phase retrieval. Allerton 2016: 331-335 - [c8]Huishuai Zhang, Yuejie Chi, Yingbin Liang:
Provable Non-convex Phase Retrieval with Outliers: Median TruncatedWirtinger Flow. ICML 2016: 1022-1031 - [c7]Huishuai Zhang, Yingbin Liang:
Reshaped Wirtinger Flow for Solving Quadratic System of Equations. NIPS 2016: 2622-2630 - [i2]Huishuai Zhang, Yingbin Liang:
Reshaped Wirtinger Flow for Solving Quadratic Systems of Equations. CoRR abs/1605.07719 (2016) - 2015
- [c6]Huishuai Zhang, Yingbin Liang, Lifeng Lai:
Secret key capacity: Talk or keep silent? ISIT 2015: 291-295 - [c5]Huishuai Zhang, Yingbin Liang, Lifeng Lai, Shlomo Shamai:
Two-key generation for a cellular model with a helper. ISIT 2015: 715-719 - [c4]Huishuai Zhang, Yi Zhou, Yingbin Liang:
Analysis of Robust PCA via Local Incoherence. NIPS 2015: 1819-1827 - 2014
- [j1]Huishuai Zhang, Lifeng Lai, Yingbin Liang, Hua Wang:
The Capacity Region of the Source-Type Model for Secret Key and Private Key Generation. IEEE Trans. Inf. Theory 60(10): 6389-6398 (2014) - [c3]Huishuai Zhang, Yingbin Liang, Lifeng Lai:
Helper-assisted asymmetric two key generation. ACSSC 2014: 65-69 - [c2]Huishuai Zhang, Lifeng Lai, Yingbin Liang, Hua Wang:
Secret key-private key generation over three terminals: Capacity region. ISIT 2014: 1141-1145 - [c1]Huishuai Zhang, Yingbin Liang, Lifeng Lai:
Key capacity region for a cellular source model. ITW 2014: 321-325 - [i1]Huishuai Zhang, Lifeng Lai, Yingbin Liang, Hua Wang:
The Capacity Region of the Source-Type Model for Secret Key and Private Key Generation. CoRR abs/1404.6471 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-15 19:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint