default search action
Andrés R. Masegosa
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i14]Ioar Casado, Luis A. Ortega, Andrés R. Masegosa, Aritz Pérez:
PAC-Bayes-Chernoff bounds for unbounded losses. CoRR abs/2401.01148 (2024) - 2023
- [i13]Andrés R. Masegosa, Luis A. Ortega:
Understanding Generalization in the Interpolation Regime using the Rate Function. CoRR abs/2306.10947 (2023) - [i12]Yijie Zhang, Yi-Shan Wu, Luis A. Ortega, Andrés R. Masegosa:
If there is no underfitting, there is no Cold Posterior Effect. CoRR abs/2310.01189 (2023) - 2022
- [j26]Daniel Russo, Andrés R. Masegosa, Klaas-Jan Stol:
From anecdote to evidence: the relationship between personality and need for cognition of developers. Empir. Softw. Eng. 27(3): 71 (2022) - [c35]Luis A. Ortega, Rafael Cabañas, Andrés R. Masegosa:
Diversity and Generalization in Neural Network Ensembles. AISTATS 2022: 11720-11743 - [c34]Antonio Salmerón, Helge Langseth, Andrés R. Masegosa, Thomas D. Nielsen:
A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. PGM 2022: 205-216 - 2021
- [j25]Andrés R. Masegosa, Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Probabilistic Models with Deep Neural Networks. Entropy 23(1): 117 (2021) - [c33]Yi-Shan Wu, Andrés R. Masegosa, Stephan Sloth Lorenzen, Christian Igel, Yevgeny Seldin:
Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote. NeurIPS 2021: 12625-12636 - [i11]Yi-Shan Wu, Andrés R. Masegosa, Stephan Sloth Lorenzen, Christian Igel, Yevgeny Seldin:
Chebyshev-Cantelli PAC-Bayes-Bennett Inequality for the Weighted Majority Vote. CoRR abs/2106.13624 (2021) - [i10]Luis A. Ortega, Rafael Cabañas, Andrés R. Masegosa:
Diversity and Generalization in Neural Network Ensembles. CoRR abs/2110.13786 (2021) - [i9]Daniel Russo, Andrés R. Masegosa, Klaas-Jan Stol:
From Anecdote to Evidence: The Relationship Between Personality and Need for Cognition of Developers. CoRR abs/2112.06610 (2021) - 2020
- [j24]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Analyzing concept drift: A case study in the financial sector. Intell. Data Anal. 24(3): 665-688 (2020) - [j23]Javier Cózar, Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa:
InferPy: Probabilistic modeling with deep neural networks made easy. Neurocomputing 415: 408-410 (2020) - [j22]Andrés R. Masegosa, Antonio Torres, María Morales, Antonio Salmerón:
Comparing two multinomial samples using hierarchical Bayesian models. Prog. Artif. Intell. 9(2): 145-154 (2020) - [c32]Andrés R. Masegosa:
Learning under Model Misspecification: Applications to Variational and Ensemble methods. NeurIPS 2020 - [c31]Andrés R. Masegosa, Stephan Sloth Lorenzen, Christian Igel, Yevgeny Seldin:
Second Order PAC-Bayesian Bounds for the Weighted Majority Vote. NeurIPS 2020 - [c30]Rafael Cabañas, Javier Cózar, Antonio Salmerón, Andrés R. Masegosa:
Probabilistic Graphical Models with Neural Networks in InferPy. PGM 2020: 601-604 - [i8]Andrés R. Masegosa, Stephan Sloth Lorenzen, Christian Igel, Yevgeny Seldin:
Second Order PAC-Bayesian Bounds for the Weighted Majority Vote. CoRR abs/2007.13532 (2020)
2010 – 2019
- 2019
- [j21]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Rafael Cabañas, Antonio Salmerón, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen:
AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowl. Based Syst. 163: 595-597 (2019) - [j20]Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa:
InferPy: Probabilistic modeling with Tensorflow made easy. Knowl. Based Syst. 168: 25-27 (2019) - [i7]Andrés R. Masegosa, Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón:
Probabilistic Models with Deep Neural Networks. CoRR abs/1908.03442 (2019) - [i6]Javier Cózar, Rafael Cabañas, Andrés R. Masegosa, Antonio Salmerón:
InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy. CoRR abs/1908.11161 (2019) - [i5]Andrés R. Masegosa:
Learning from i.i.d. data under model miss-specification. CoRR abs/1912.08335 (2019) - 2018
- [j19]Darío Ramos-López, Andrés R. Masegosa, Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen:
Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. Int. J. Approx. Reason. 100: 115-134 (2018) - [c29]Rafael Cabañas, Andrés Cano, Manuel Gómez-Olmedo, Andrés R. Masegosa, Serafín Moral:
Virtual Subconcept Drift Detection in Discrete Data Using Probabilistic Graphical Models. IPMU (3) 2018: 616-628 - 2017
- [j18]Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen:
Scaling up Bayesian variational inference using distributed computing clusters. Int. J. Approx. Reason. 88: 435-451 (2017) - [j17]Darío Ramos-López, Andrés R. Masegosa, Ana M. Martínez, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
MAP inference in dynamic hybrid Bayesian networks. Prog. Artif. Intell. 6(2): 133-144 (2017) - [c28]Sergej Dogadov, Andrés R. Masegosa, Shinichi Nakajima:
Variational Robust Subspace Clustering with Mean Update Algorithm. ICCV Workshops 2017: 1792-1799 - [c27]Andrés R. Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen:
Bayesian Models of Data Streams with Hierarchical Power Priors. ICML 2017: 2334-2343 - [i4]Andrés R. Masegosa, Ana M. Martínez, Darío Ramos-López, Rafael Cabañas, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning. CoRR abs/1704.01427 (2017) - [i3]Andrés R. Masegosa, Thomas D. Nielsen, Helge Langseth, Darío Ramos-López, Antonio Salmerón, Anders L. Madsen:
Bayesian Models of Data Streams with Hierarchical Power Priors. CoRR abs/1707.02293 (2017) - 2016
- [j16]Andrés R. Masegosa, Ana M. Martínez, Hanen Borchani:
Probabilistic Graphical Models on Multi-Core CPUs Using Java 8. IEEE Comput. Intell. Mag. 11(2): 41-54 (2016) - [j15]Andrés R. Masegosa, A. J. Feelders, Linda C. van der Gaag:
Learning from incomplete data in Bayesian networks with qualitative influences. Int. J. Approx. Reason. 69: 18-34 (2016) - [c26]Antonio Salmerón, Anders L. Madsen, Frank Jensen, Helge Langseth, Thomas D. Nielsen, Darío Ramos-López, Ana M. Martínez, Andrés R. Masegosa:
Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs. ECAI 2016: 743-750 - [c25]Rafael Cabañas, Ana M. Martínez, Andrés R. Masegosa, Darío Ramos-López, Antonio Salmerón, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen:
Financial Data Analysis with PGMs Using AMIDST. ICDM Workshops 2016: 1284-1287 - [c24]Andrés R. Masegosa, Ana M. Martínez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen:
d-VMP: Distributed Variational Message Passing. Probabilistic Graphical Models 2016: 321-332 - [c23]Darío Ramos-López, Antonio Salmerón, Rafael Rumí, Ana M. Martínez, Thomas D. Nielsen, Andrés R. Masegosa, Helge Langseth, Anders L. Madsen:
Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Probabilistic Graphical Models 2016: 415-425 - [i2]Andrés R. Masegosa, Ana M. Martínez, Hanen Borchani:
Probabilistic Graphical Models on Multi-Core CPUs using Java 8. CoRR abs/1604.07990 (2016) - 2015
- [c22]Antonio Salmerón, Darío Ramos-López, Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Antonio Fernández, Helge Langseth, Anders L. Madsen, Thomas D. Nielsen:
Parallel Importance Sampling in Conditional Linear Gaussian Networks. CAEPIA 2015: 36-46 - [c21]Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez:
Modeling Concept Drift: A Probabilistic Graphical Model Based Approach. IDA 2015: 72-83 - [c20]Hanen Borchani, Ana M. Martínez, Andrés R. Masegosa, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Antonio Fernández, Anders L. Madsen, Ramón Sáez:
Dynamic Bayesian modeling for risk prediction in credit operations. SCAI 2015: 17-26 - 2014
- [j14]Joaquín Abellán, Rebecca M. Baker, Frank P. A. Coolen, Richard J. Crossman, Andrés R. Masegosa:
Classification with decision trees from a nonparametric predictive inference perspective. Comput. Stat. Data Anal. 71: 789-802 (2014) - [j13]Andrés R. Masegosa, Serafín Moral:
Imprecise probability models for learning multinomial distributions from data. Applications to learning credal networks. Int. J. Approx. Reason. 55(7): 1548-1569 (2014) - [j12]Andrés R. Masegosa, Serafín Moral:
Rejoinder on "Imprecise probability models for learning multinomial distributions from data. Applications to learning credal networks". Int. J. Approx. Reason. 55(7): 1618-1622 (2014) - [c19]Thomas D. Nielsen, Sigve Hovda, Antonio Fernández, Helge Langseth, Anders L. Madsen, Andrés R. Masegosa, Antonio Salmerón:
Requirement Engineering for a Small Project with Pre-Specified Scope. NIK 2014 - [c18]Andrés R. Masegosa:
Stochastic Discriminative EM. UAI 2014: 573-582 - [i1]Andrés R. Masegosa:
Stochastic Discriminative EM. CoRR abs/1410.1784 (2014) - 2013
- [j11]Andrés R. Masegosa, Serafín Moral:
New skeleton-based approaches for Bayesian structure learning of Bayesian networks. Appl. Soft Comput. 13(2): 1110-1120 (2013) - [j10]Andrés Cano, Manuel Gómez-Olmedo, Andrés R. Masegosa, Serafín Moral:
Locally averaged Bayesian Dirichlet metrics for learning the structure and the parameters of Bayesian networks. Int. J. Approx. Reason. 54(4): 526-540 (2013) - [j9]Andrés R. Masegosa, Serafín Moral:
An interactive approach for Bayesian network learning using domain/expert knowledge. Int. J. Approx. Reason. 54(8): 1168-1181 (2013) - 2012
- [j8]Joaquín Abellán, Andrés R. Masegosa:
Bagging schemes on the presence of class noise in classification. Expert Syst. Appl. 39(8): 6827-6837 (2012) - [j7]Joaquín Abellán, Andrés R. Masegosa:
Imprecise Classification with Credal Decision Trees. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(5): 763-788 (2012) - [j6]Andrés R. Masegosa, Serafín Moral:
A Bayesian stochastic search method for discovering Markov boundaries. Knowl. Based Syst. 35: 211-223 (2012) - [c17]María M. Abad-Grau, Nuria Medina-Medina, Andrés R. Masegosa, Serafín Moral:
Haplotype-based Classifiers to Predict Individual Susceptibility to Complex Diseases - An Example for Multiple Sclerosis. BIOINFORMATICS 2012: 360-366 - 2011
- [j5]Joaquín Abellán, Andrés Cano, Andrés R. Masegosa, Serafín Moral:
A memory efficient semi-Naive Bayes classifier with grouping of cases. Intell. Data Anal. 15(3): 299-318 (2011) - [j4]Andrés Cano, Andrés R. Masegosa, Serafín Moral:
A Method for Integrating Expert Knowledge When Learning Bayesian Networks From Data. IEEE Trans. Syst. Man Cybern. Part B 41(5): 1382-1394 (2011) - [c16]Andrés Cano, Manuel Gómez-Olmedo, Andrés R. Masegosa, Serafín Moral:
Locally Averaged Bayesian Dirichlet Metrics. ECSQARU 2011: 217-228 - [c15]Andrés Cano, Manuel Gómez-Olmedo, Andrés R. Masegosa, Serafín Moral:
Learning with Bayesian networks and probability trees to approximate a joint distribution. ISDA 2011: 624-629 - [c14]Sergio Torres-Sánchez, Rosana Montes-Soldado, Nuria Medina-Medina, Andrés R. Masegosa, María del Mar Abad-Grau:
Riskoweb: Web-Based Genetic Profiling to Complex Disease Using Genome-Wide SNP Markers. PACBB 2011: 1-8 - 2010
- [j3]Joaquín Abellán, Andrés R. Masegosa:
An ensemble method using credal decision trees. Eur. J. Oper. Res. 205(1): 218-226 (2010) - [c13]Joaquín Abellán, Andrés R. Masegosa:
Bagging Decision Trees on Data Sets with Classification Noise. FoIKS 2010: 248-265 - [c12]Andrés Cano, Andrés R. Masegosa, Serafín Moral:
An Importance Sampling Approach to Integrate Expert Knowledge When Learning Bayesian Networks From Data. IPMU 2010: 685-695
2000 – 2009
- 2009
- [j2]Joaquín Abellán, Andrés R. Masegosa:
A Filter-Wrapper Method to Select Variables for the Naive Bayes Classifier Based on Credal Decision Trees. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17(6): 833-854 (2009) - [c11]Joaquín Abellán, Andrés R. Masegosa:
An Experimental Study about Simple Decision Trees for Bagging Ensemble on Datasets with Classification Noise. ECSQARU 2009: 446-456 - [c10]Andrés Cano, Andrés R. Masegosa, Serafín Moral:
A Bayesian Random Split to Build Ensembles of Classification Trees. ECSQARU 2009: 469-480 - [c9]Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Andrés R. Masegosa, Alfonso E. Romero:
Link-Based Text Classification Using Bayesian Networks. INEX 2009: 397-406 - 2008
- [j1]Joaquín Abellán, Andrés R. Masegosa:
Requirements for total uncertainty measures in Dempster-Shafer theory of evidence. Int. J. Gen. Syst. 37(6): 733-747 (2008) - 2007
- [c8]Andrés R. Masegosa, Hideo Joho, Joemon M. Jose:
Evaluating Query-Independent Object Features for Relevancy Prediction. ECIR 2007: 283-294 - [c7]Joaquín Abellán, Andrés Cano, Andrés R. Masegosa, Serafín Moral:
A Semi-naive Bayes Classifier with Grouping of Cases. ECSQARU 2007: 477-488 - [c6]Joaquín Abellán, Andrés R. Masegosa:
Split Criterions for Variable Selection Using Decision Trees. ECSQARU 2007: 489-500 - [c5]Joaquín Abellán, Andrés R. Masegosa:
Combining Decision Trees Based on Imprecise Probabilities and Uncertainty Measures. ECSQARU 2007: 512-523 - [c4]Andrés R. Masegosa, Hideo Joho, Joemon M. Jose:
Effects of highly agreed documents in relevancy prediction. SIGIR 2007: 883-884 - 2006
- [c3]Joaquín Abellán, Serafín Moral, Manuel Gómez-Olmedo, Andrés R. Masegosa:
Varying Parameter in Classification Based on Imprecise Probabilities. SMPS 2006: 231-239 - 2005
- [c2]Andrés Cano, Francisco Javier García Castellano, Andrés R. Masegosa, Serafín Moral:
Selective Gaussian Naïve Bayes Model for Diffuse Large-B-Cell Lymphoma Classification: Some Improvements in Preprocessing and Variable Elimination. ECSQARU 2005: 908-920 - [c1]Andrés Cano, Francisco Javier García Castellano, Andrés R. Masegosa, Serafín Moral:
Methods to Determine the Branching Attribute in Bayesian Multinets Classifiers. ECSQARU 2005: 932-943
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:17 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint