Nothing Special   »   [go: up one dir, main page]

Skip to main content

Varying Parameter in Classification Based on Imprecise Probabilities

  • Chapter
Soft Methods for Integrated Uncertainty Modelling

Part of the book series: Advances in Soft Computing ((AINSC,volume 37))

Abstract

We shall present a first explorative study of the variation of the parameter s of the imprecise Dirichlet model when it is used to build classification trees. In the method to build classification trees we use uncertainty measures on closed and convex sets of probability distributions, otherwise known as credal sets. We will use the imprecise Dirichlet model to obtain a credal set from a sample, where the set of probabilities obtained depends on s. According to the characteristics of the dataset used, we will see that the results can be improved varying the values of s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abellán J. (2006) Uncertainty measures on probability intervals from the imprecise Dirichlet model. To appear in Int. J. of Gen. Syst. 35(3).

    Google Scholar 

  2. Abellán J. and Moral, S. (1999) Completing a Total Uncertainty Measure in Dempster-Shafer Theory, Int. J. of Gen. Syst., 28:299–314.

    Article  MATH  Google Scholar 

  3. Abellán J. and Moral, S. (2000) A Non-specificity measure for convex sets of probability distributions, Int. J. of Uncer., Fuzz. and K-B Syst., 8:357–367.

    MATH  Google Scholar 

  4. Abellán J. and Moral, S. (2003) Maximum entropy for credal sets, Int. J. of Uncer., Fuzz. and K-B Syst., 11:587–597.

    Article  MATH  Google Scholar 

  5. Abellán J. and Moral, S. (2003) Using the total uncertainty criterion for building classification trees, Int. J. of Int. Syst. 18(12):1215–1225.

    Article  MATH  Google Scholar 

  6. Abellán J. and Moral, S. (2005) Maximum difference of entropies as a nonspecificty measure for credal sets, Int. J. of Gen. Syst., 34(3):201–214.

    Article  MATH  Google Scholar 

  7. Abellán J. and Moral, S. (2005) Upper entropy of credal sets. Applications to credal classification, Int. J. of Appr. Reas., 39:235–255.

    Article  MATH  Google Scholar 

  8. Abellán J., Klir, G.J. and Moral, S. (2006) Disaggregated total uncertainty measure for credal sets, Int. J. of Gen. Syst., 35(1):29–44.

    Article  MATH  Google Scholar 

  9. Abellán J. and Moral, S. (2006) An algorithm that computes the upper entropy for order-2 capacities, Int. J. of Uncer., Fuzz. and K-B Syst., 14(2):141–154.

    Article  MATH  Google Scholar 

  10. Bernard, J.M. (2005) An introduction to the imprecise Dirichlet model for multinomial data, Int. J. of Appr. Reas., 39:123–150.

    Article  MATH  MathSciNet  Google Scholar 

  11. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone. C.J. (1984) Classification and Regression Trees. Wadsworth Statistics, Probability Series, Belmont.

    Google Scholar 

  12. A.P. Dempster, A.P. (1967) Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38:325–339.

    Google Scholar 

  13. Dubois, D. and Prade, H. (1987) Properties and Measures of Information in Evidence and Possibility Theories. Fuzz. Sets and Syst., 24:183–196.

    Article  Google Scholar 

  14. Fayyad, U.M. and Irani, K.B. (1993) Multi-valued interval discretization of continuous-valued attributes for classification learning. Proc. of the 13th Inter. Joint Conf. on Art. Int., Morgan Kaufmann, San Mateo, 1022–1027.

    Google Scholar 

  15. Klir, G.J. (2006) Uncertainty and Information: Foundations of Generalized Information Theory. John Wiley, Hoboken, NJ.

    Google Scholar 

  16. Klir G.J. and Smith, R.M. (2001) On measuring uncertainty and uncertaintybased information: Recent developments, Ann. of Math. and Art. Intell., 32(1–4):5–33.

    Article  MathSciNet  Google Scholar 

  17. Klir G.J. and Wierman, M.J. (1998) Uncertainty-Based Inf., Phisica-Verlag.

    Google Scholar 

  18. Quinlan, J.R. (1986) Induction of decision trees, Machine Learning, 1:81–106.

    Google Scholar 

  19. Quinlan, J.R. (1993) Programs for Machine Learning. Morgan Kaufmann series in Machine Learning.

    Google Scholar 

  20. Shafer G. (1976) A Mathematical Theory of Evidence, Princeton University Press, Princeton.

    MATH  Google Scholar 

  21. Walley, P. (1991) Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London.

    MATH  Google Scholar 

  22. Walley, P. (1996) Inferences from multinomial data: learning about a bag of marbles, J. Roy. Statist. Soc. B, 58:3–57.

    MATH  MathSciNet  Google Scholar 

  23. Zaffalon, M. (1999) A credal approach to naive classification, Proc. of the First Int. Symp. on Impr. Prob. and their Appl. ’99, Gent, 405–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Abellán, J., Moral, S., Gómez, M., Masegosa, A. (2006). Varying Parameter in Classification Based on Imprecise Probabilities. In: Lawry, J., et al. Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34777-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-34777-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34776-7

  • Online ISBN: 978-3-540-34777-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics