default search action
Sivaraman Balakrishnan
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c41]Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Missingness Shift. AISTATS 2023: 9577-9606 - [c40]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary Chase Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. ICML 2023: 10879-10928 - [c39]Dheeraj Baby, Saurabh Garg, Tzu-Ching Yen, Sivaraman Balakrishnan, Zachary C. Lipton, Yu-Xiang Wang:
Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms. NeurIPS 2023 - [c38]Saurabh Garg, Amrith Setlur, Zachary C. Lipton, Sivaraman Balakrishnan, Virginia Smith, Aditi Raghunathan:
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift. NeurIPS 2023 - [i40]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. CoRR abs/2302.03020 (2023) - [i39]Dheeraj Baby, Saurabh Garg, Tzu-Ching Yen, Sivaraman Balakrishnan, Zachary Chase Lipton, Yu-Xiang Wang:
Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms. CoRR abs/2305.19570 (2023) - [i38]Saurabh Garg, Amrith Setlur, Zachary Chase Lipton, Sivaraman Balakrishnan, Virginia Smith, Aditi Raghunathan:
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift. CoRR abs/2312.03318 (2023) - 2022
- [j12]Charvi Rastogi, Sivaraman Balakrishnan, Nihar B. Shah, Aarti Singh:
Two-Sample Testing on Ranked Preference Data and the Role of Modeling Assumptions. J. Mach. Learn. Res. 23: 225:1-225:48 (2022) - [c37]Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
Heavy-tailed Streaming Statistical Estimation. AISTATS 2022: 1251-1282 - [c36]Pranjal Awasthi, Sivaraman Balakrishnan, Aravindan Vijayaraghavan:
Understanding Simultaneous Train and Test Robustness. ALT 2022: 34-69 - [c35]Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, Hanie Sedghi:
Leveraging unlabeled data to predict out-of-distribution performance. ICLR 2022 - [c34]Charvi Rastogi, Ivan Stelmakh, Nihar B. Shah, Sivaraman Balakrishnan:
No Rose for MLE: Inadmissibility of MLE for Evaluation Aggregation Under Levels of Expertise. ISIT 2022: 3168-3173 - [c33]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Open Set Label Shift. NeurIPS 2022 - [i37]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton, Behnam Neyshabur, Hanie Sedghi:
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance. CoRR abs/2201.04234 (2022) - [i36]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Open Set Label Shift. CoRR abs/2207.13048 (2022) - [i35]Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Missingness Shift. CoRR abs/2211.02093 (2022) - 2021
- [j11]Chirag Gupta, Sivaraman Balakrishnan, Aaditya Ramdas:
Path Length Bounds for Gradient Descent and Flow. J. Mach. Learn. Res. 22: 68:1-68:63 (2021) - [j10]Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani:
Statistical Guarantees for Local Spectral Clustering on Random Neighborhood Graphs. J. Mach. Learn. Res. 22: 247:1-247:71 (2021) - [j9]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
A Permutation-Based Model for Crowd Labeling: Optimal Estimation and Robustness. IEEE Trans. Inf. Theory 67(6): 4162-4184 (2021) - [c32]Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani:
Minimax Optimal Regression over Sobolev Spaces via Laplacian Regularization on Neighborhood Graphs. AISTATS 2021: 2602-2610 - [c31]Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, Zachary C. Lipton:
RATT: Leveraging Unlabeled Data to Guarantee Generalization. ICML 2021: 3598-3609 - [c30]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Zachary C. Lipton, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. ICML 2021: 3610-3619 - [c29]Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. NeurIPS 2021: 8532-8544 - [i34]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Sivaraman Balakrishnan, Zachary C. Lipton, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. CoRR abs/2102.10264 (2021) - [i33]Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, Zachary C. Lipton:
RATT: Leveraging Unlabeled Data to Guarantee Generalization. CoRR abs/2105.00303 (2021) - [i32]Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
Heavy-tailed Streaming Statistical Estimation. CoRR abs/2108.11483 (2021) - [i31]Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. CoRR abs/2111.00980 (2021) - 2020
- [j8]Yichong Xu, Sivaraman Balakrishnan, Aarti Singh, Artur Dubrawski:
Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information. J. Mach. Learn. Res. 21: 162:1-162:54 (2020) - [c28]Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
A Robust Univariate Mean Estimator is All You Need. AISTATS 2020: 4034-4044 - [c27]Charvi Rastogi, Sivaraman Balakrishnan, Nihar B. Shah, Aarti Singh:
Two-Sample Testing on Pairwise Comparison Data and the Role of Modeling Assumptions. ISIT 2020: 1271-1276 - [c26]Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, Zachary C. Lipton:
A Unified View of Label Shift Estimation. NeurIPS 2020 - [c25]Adarsh Prasad, Vishwak Srinivasan, Sivaraman Balakrishnan, Pradeep Ravikumar:
On Learning Ising Models under Huber's Contamination Model. NeurIPS 2020 - [i30]Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, Zachary C. Lipton:
A Unified View of Label Shift Estimation. CoRR abs/2003.07554 (2020) - [i29]Charvi Rastogi, Sivaraman Balakrishnan, Nihar B. Shah, Aarti Singh:
Two-Sample Testing on Ranked Preference Data and the Role of Modeling Assumptions. CoRR abs/2006.11909 (2020)
2010 – 2019
- 2019
- [j7]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Low Permutation-rank Matrices: Structural Properties and Noisy Completion. J. Mach. Learn. Res. 20: 101:1-101:43 (2019) - [j6]Yining Wang, Jialei Wang, Sivaraman Balakrishnan, Aarti Singh:
Rate optimal estimation and confidence intervals for high-dimensional regression with missing covariates. J. Multivar. Anal. 174 (2019) - [j5]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons. IEEE Trans. Inf. Theory 65(8): 4854-4874 (2019) - [j4]Yining Wang, Sivaraman Balakrishnan, Aarti Singh:
Optimization of Smooth Functions With Noisy Observations: Local Minimax Rates. IEEE Trans. Inf. Theory 65(11): 7350-7366 (2019) - [i28]Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:
A Unified Approach to Robust Mean Estimation. CoRR abs/1907.00927 (2019) - [i27]Chirag Gupta, Sivaraman Balakrishnan, Aaditya Ramdas:
Path Length Bounds for Gradient Descent and Flow. CoRR abs/1908.01089 (2019) - 2018
- [c24]Yichong Xu, Sivaraman Balakrishnan, Aarti Singh, Artur Dubrawski:
Interactive Linear Regression with Pairwise Comparisons. ACSSC 2018: 636-640 - [c23]Yining Wang, Simon S. Du, Sivaraman Balakrishnan, Aarti Singh:
Stochastic Zeroth-order Optimization in High Dimensions. AISTATS 2018: 1356-1365 - [c22]Yichong Xu, Hariank Muthakana, Sivaraman Balakrishnan, Aarti Singh, Artur Dubrawski:
Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information. ICML 2018: 5469-5478 - [c21]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Low Permutation-Rank Matrices: Structural Properties and Noisy Completion. ISIT 2018: 366-370 - [c20]Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Aarti Singh:
How Many Samples are Needed to Estimate a Convolutional Neural Network? NeurIPS 2018: 371-381 - [c19]Yining Wang, Sivaraman Balakrishnan, Aarti Singh:
Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates. NeurIPS 2018: 4343-4354 - [c18]Sivaraman Balakrishnan, Yo Joong Choe, Aarti Singh, Jean M. Vettel, Timothy D. Verstynen:
Local White Matter Architecture Defines Functional Brain Dynamics. SMC 2018: 595-602 - [i26]Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, Pradeep Ravikumar:
Robust Estimation via Robust Gradient Estimation. CoRR abs/1802.06485 (2018) - [i25]Yining Wang, Sivaraman Balakrishnan, Aarti Singh:
Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates. CoRR abs/1803.08586 (2018) - [i24]Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Aarti Singh:
How Many Samples are Needed to Learn a Convolutional Neural Network? CoRR abs/1805.07883 (2018) - [i23]Simon S. Du, Yining Wang, Sivaraman Balakrishnan, Pradeep Ravikumar, Aarti Singh:
Robust Nonparametric Regression under Huber's ε-contamination Model. CoRR abs/1805.10406 (2018) - [i22]Yichong Xu, Hariank Muthakana, Sivaraman Balakrishnan, Aarti Singh, Artur Dubrawski:
Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information. CoRR abs/1806.03286 (2018) - 2017
- [j3]Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright:
Statistical and Computational Guarantees for the Baum-Welch Algorithm. J. Mach. Learn. Res. 18: 125:1-125:53 (2017) - [j2]Nihar B. Shah, Sivaraman Balakrishnan, Adityanand Guntuboyina, Martin J. Wainwright:
Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues. IEEE Trans. Inf. Theory 63(2): 934-959 (2017) - [c17]Sivaraman Balakrishnan, Simon S. Du, Jerry Li, Aarti Singh:
Computationally Efficient Robust Sparse Estimation in High Dimensions. COLT 2017: 169-212 - [c16]Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, Vyas Sekar, Bruno Sinopoli:
Biases in Data-Driven Networking, and What to Do About Them. HotNets 2017: 192-198 - [i21]Yining Wang, Jialei Wang, Sivaraman Balakrishnan, Aarti Singh:
Rate Optimal Estimation and Confidence Intervals for High-dimensional Regression with Missing Covariates. CoRR abs/1702.02686 (2017) - [i20]Simon S. Du, Sivaraman Balakrishnan, Aarti Singh:
Computationally Efficient Robust Estimation of Sparse Functionals. CoRR abs/1702.07709 (2017) - [i19]Sivaraman Balakrishnan, Larry A. Wasserman:
Hypothesis Testing For Densities and High-Dimensional Multinomials: Sharp Local Minimax Rates. CoRR abs/1706.10003 (2017) - [i18]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Low Permutation-rank Matrices: Structural Properties and Noisy Completion. CoRR abs/1709.00127 (2017) - [i17]Yining Wang, Simon S. Du, Sivaraman Balakrishnan, Aarti Singh:
Stochastic Zeroth-order Optimization in High Dimensions. CoRR abs/1710.10551 (2017) - [i16]Sivaraman Balakrishnan, Larry A. Wasserman:
Hypothesis Testing for High-Dimensional Multinomials: A Selective Review. CoRR abs/1712.06120 (2017) - 2016
- [j1]Nihar B. Shah, Sivaraman Balakrishnan, Joseph K. Bradley, Abhay Parekh, Kannan Ramchandran, Martin J. Wainwright:
Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence. J. Mach. Learn. Res. 17: 58:1-58:47 (2016) - [c15]Nihar B. Shah, Sivaraman Balakrishnan, Aditya Guntuboyina, Martin J. Wainwright:
Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues. ICML 2016: 11-20 - [c14]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Feeling the bern: Adaptive estimators for Bernoulli probabilities of pairwise comparisons. ISIT 2016: 1153-1157 - [c13]Jisu Kim, Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, Larry A. Wasserman:
Statistical Inference for Cluster Trees. NIPS 2016: 1831-1839 - [c12]Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, Michael I. Jordan:
Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences. NIPS 2016: 4116-4124 - [c11]Christian Kroer, Miroslav Dudík, Sébastien Lahaie, Sivaraman Balakrishnan:
Arbitrage-Free Combinatorial Market Making via Integer Programming. EC 2016: 161-178 - [i15]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons. CoRR abs/1603.06881 (2016) - [i14]Christian Kroer, Miroslav Dudík, Sébastien Lahaie, Sivaraman Balakrishnan:
Arbitrage-Free Combinatorial Market Making via Integer Programming. CoRR abs/1606.02825 (2016) - [i13]Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright:
A Permutation-based Model for Crowd Labeling: Optimal Estimation and Robustness. CoRR abs/1606.09632 (2016) - [i12]Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, Michael I. Jordan:
Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences. CoRR abs/1609.00978 (2016) - 2015
- [c10]Nihar B. Shah, Sivaraman Balakrishnan, Joseph K. Bradley, Abhay Parekh, Kannan Ramchandran, Martin J. Wainwright:
Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence. AISTATS 2015 - [c9]Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright:
Statistical and computational guarantees for the Baum-Welch algorithm. Allerton 2015: 658-665 - [i11]Nihar B. Shah, Sivaraman Balakrishnan, Joseph K. Bradley, Abhay Parekh, Kannan Ramchandran, Martin J. Wainwright:
Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence. CoRR abs/1505.01462 (2015) - [i10]Nihar B. Shah, Sivaraman Balakrishnan, Adityanand Guntuboyina, Martin J. Wainwright:
Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues. CoRR abs/1510.05610 (2015) - [i9]Fanny Yang, Sivaraman Balakrishnan, Martin J. Wainwright:
Statistical and Computational Guarantees for the Baum-Welch Algorithm. CoRR abs/1512.08269 (2015) - 2014
- [i8]Nihar B. Shah, Sivaraman Balakrishnan, Joseph K. Bradley, Abhay Parekh, Kannan Ramchandran, Martin J. Wainwright:
When is it Better to Compare than to Score? CoRR abs/1406.6618 (2014) - [i7]Sivaraman Balakrishnan, Martin J. Wainwright, Bin Yu:
Statistical guarantees for the EM algorithm: From population to sample-based analysis. CoRR abs/1408.2156 (2014) - 2013
- [c8]Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Cluster Trees on Manifolds. NIPS 2013: 2679-2687 - [i6]Sivaraman Balakrishnan, Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Statistical Inference For Persistent Homology. CoRR abs/1303.7117 (2013) - [i5]Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Cluster Trees on Manifolds. CoRR abs/1307.6515 (2013) - [i4]Sivaraman Balakrishnan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Tight Lower Bounds for Homology Inference. CoRR abs/1307.7666 (2013) - 2012
- [c7]Sivaraman Balakrishnan, Kriti Puniyani, John D. Lafferty:
Sparse Additive Functional and Kernel CCA. ICML 2012 - [c6]Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, Aarti Singh:
Efficient Active Algorithms for Hierarchical Clustering. ICML 2012 - [c5]Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu:
Optimal kernel choice for large-scale two-sample tests. NIPS 2012: 1214-1222 - [c4]Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry A. Wasserman:
Minimax rates for homology inference. AISTATS 2012: 64-72 - [i3]Sivaraman Balakrishnan, Kriti Puniyani, John D. Lafferty:
Sparse Additive Functional and Kernel CCA. CoRR abs/1206.4669 (2012) - [i2]Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, Aarti Singh:
Efficient Active Algorithms for Hierarchical Clustering. CoRR abs/1206.4672 (2012) - 2011
- [c3]Mladen Kolar, Sivaraman Balakrishnan, Alessandro Rinaldo, Aarti Singh:
Minimax Localization of Structural Information in Large Noisy Matrices. NIPS 2011: 909-917 - [c2]Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, Aarti Singh:
Noise Thresholds for Spectral Clustering. NIPS 2011: 954-962 - [i1]Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry A. Wasserman:
Minimax Rates for Homology Inference. CoRR abs/1112.5627 (2011)
2000 – 2009
- 2009
- [c1]Sivaraman Balakrishnan, Öznur Tastan, Jaime G. Carbonell, Judith Klein-Seetharaman:
Communication interception of human signal transduction pathways by Human Immunodeficiency Virus-1. GENSiPS 2009: 1-4
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint