default search action
2nd LT-EDI 2022: Dublin, Ireland
- Bharathi Raja Chakravarthi, B. Bharathi, John P. McCrae, Manel Zarrouk, Kalika Bali, Paul Buitelaar:
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion, LT-EDI 2022, Dublin, Ireland, May 27, 2022. Association for Computational Linguistics 2022, ISBN 978-1-955917-43-8 - Nina Markl:
Mind the data gap(s): Investigating power in speech and language datasets. 1-12 - Anna Pillar, Kyrill Poelmans, Martha A. Larson:
Regex in a Time of Deep Learning: The Role of an Old Technology in Age Discrimination Detection in Job Advertisements. 13-18 - Jetske Adams, Kyrill Poelmans, Iris Hendrickx, Martha A. Larson:
Doing not Being: Concrete Language as a Bridge from Language Technology to Ethnically Inclusive Job Ads. 19-25 - Debora Nozza
, Federico Bianchi, Anne Lauscher
, Dirk Hovy:
Measuring Harmful Sentence Completion in Language Models for LGBTQIA+ Individuals. 26-34 - Akhter Al Amin, Saad Hassan
, Cecilia O. Alm, Matt Huenerfauth:
Using BERT Embeddings to Model Word Importance in Conversational Transcripts for Deaf and Hard of Hearing Users. 35-40 - Yoon A. Park, Frank Rudzicz:
Detoxifying Language Models with a Toxic Corpus. 41-46 - Marion Bartl
, Susan Leavy
:
Inferring Gender: A Scalable Methodology for Gender Detection with Online Lexical Databases. 47-58 - Michael Gira, Ruisu Zhang, Kangwook Lee:
Debiasing Pre-Trained Language Models via Efficient Fine-Tuning. 59-69 - Harrison Santiago, Joshua L. Martin, Sarah Moeller
, Kevin Tang:
Disambiguation of morpho-syntactic features of African American English - the case of habitual be. 70-75 - Courtney Mansfield, Amandalynne Paullada, Kristen Howell:
Behind the Mask: Demographic bias in name detection for PII masking. 76-89 - António Câmara, Nina Taneja, Tamjeed Azad
, Emily Allaway, Richard S. Zemel:
Mapping the Multilingual Margins: Intersectional Biases of Sentiment Analysis Systems in English, Spanish, and Arabic. 90-106 - Kyle Swanson, Joy Hsu, Mirac Suzgun:
Monte Carlo Tree Search for Interpreting Stress in Natural Language. 107-119 - Pradeep Kumar Roy, Snehaan Bhawal, Abhinav Kumar, Bharathi Raja Chakravarthi:
IIITSurat@LT-EDI-ACL2022: Hope Speech Detection using Machine Learning. 120-126 - Adeep Hande, Siddhanth U. Hegde, Sangeetha Sivanesan, Ruba Priyadharshini, Bharathi Raja Chakravarthi:
The Best of both Worlds: Dual Channel Language modeling for Hope Speech Detection in low-resourced Kannada. 127-135 - Wei-Yao Wang, Yu-Chien Tang, Wei-Wei Du, Wen-Chih Peng:
NYCU_TWD@LT-EDI-ACL2022: Ensemble Models with VADER and Contrastive Learning for Detecting Signs of Depression from Social Media. 136-139 - José Antonio García-Díaz, Camilo Caparrós-Laiz, Rafael Valencia-García:
UMUTeam@LT-EDI-ACL2022: Detecting homophobic and transphobic comments in Tamil. 140-144 - José Antonio García-Díaz, Rafael Valencia-García:
UMUTeam@LT-EDI-ACL2022: Detecting Signs of Depression from text. 145-148 - Vitthal Bhandari, Poonam Goyal:
bitsa_nlp@LT-EDI-ACL2022: Leveraging Pretrained Language Models for Detecting Homophobia and Transphobia in Social Media Comments. 149-154 - Abulimiti Maimaitituoheti:
ABLIMET @LT-EDI-ACL2022: A Roberta based Approach for Homophobia/Transphobia Detection in Social Media. 155-160 - Anusha Gowda, Fazlourrahman Balouchzahi, Hosahalli Lakshmaiah Shashirekha, Grigori Sidorov:
MUCIC@LT-EDI-ACL2022: Hope Speech Detection using Data Re-Sampling and 1D Conv-LSTM. 161-166 - Nawshad Farruque, Osmar Zaïane, Randy Goebel, Sudhakar Sivapalan:
DeepBlues@LT-EDI-ACL2022: Depression level detection modelling through domain specific BERT and short text Depression classifiers. 167-171 - Praveenkumar Vijayakumar, Prathyush S, Aravind P, Angel Suseelan, Rajalakshmi Sivanaiah
, S. Milton Rajendram, T. T. Mirnalinee:
SSN_ARMM@ LT-EDI -ACL2022: Hope Speech Detection for Equality, Diversity, and Inclusion Using ALBERT model. 172-176 - Suhasini S, Bharathi B:
SUH_ASR@LT-EDI-ACL2022: Transformer based Approach for Speech Recognition for Vulnerable Individuals in Tamil. 177-182 - Yue Zhu:
LPS@LT-EDI-ACL2022: An Ensemble Approach about Hope Speech Detection. 183-189 - Vanshita Jha, Ankit Mishra, Sunil Saumya:
CURAJ_IIITDWD@LT-EDI-ACL 2022: Hope Speech Detection in English YouTube Comments using Deep Learning Techniques. 190-195 - Sarika Esackimuthu, Shruthi Hariprasad, Rajalakshmi Sivanaiah
, Angel Deborah S, Sakaya Milton Rajendram, T. T. Mirnalinee:
SSN_MLRG3 @LT-EDI-ACL2022-Depression Detection System from Social Media Text using Transformer Models. 196-199 - Xiaotian Lin, Yingwen Fu, Ziyu Yang, Nankai Lin, Shengyi Jiang:
BERT 4EVER@LT-EDI-ACL2022-Detecting signs of Depression from Social Media: Detecting Depression in Social Media using Prompt-Learning and Word-Emotion Cluster. 200-205 - Fazlourrahman Balouchzahi, Sabur Butt
, Grigori Sidorov, Alexander F. Gelbukh:
CIC@LT-EDI-ACL2022: Are transformers the only hope? Hope speech detection for Spanish and English comments. 206-211 - Sivamanikandan S, Santhosh V, Sanjaykumar N, Jerin Mahibha C, Thenmozhi Durairaj:
scubeMSEC@LT-EDI-ACL2022: Detection of Depression using Transformer Models. 212-217 - Bharathi B, Dhanya Srinivasan, Josephine Varsha, Thenmozhi Durairaj, Senthil Kumar B
:
SSNCSE_NLP@LT-EDI-ACL2022: Hope Speech Detection for Equality, Diversity and Inclusion using sentence transformers. 218-222 - Abhinav Kumar, Sunil Saumya, Pradeep Roy:
SOA_NLP@LT-EDI-ACL2022: An Ensemble Model for Hope Speech Detection from YouTube Comments. 223-228 - Vishesh Gupta, Ritesh Kumar, Rajendra Pamula:
IIT Dhanbad @LT-EDI-ACL2022- Hope Speech Detection for Equality, Diversity, and Inclusion. 229-233 - Tanmay Basu:
IISERB@LT-EDI-ACL2022: A Bag of Words and Document Embeddings Based Framework to Identify Severity of Depression Over Social Media. 234-238 - Krithika Swaminathan, Bharathi B, Gayathri G. L, Hrishik Sampath:
SSNCSE_NLP@LT-EDI-ACL2022: Homophobia/Transphobia Detection in Multiple Languages using SVM Classifiers and BERT-based Transformers. 239-244 - Manex Agirrezabal, Janek Amann:
KUCST@LT-EDI-ACL2022: Detecting Signs of Depression from Social Media Text. 245-250 - Ilija Tavchioski, Boshko Koloski, Blaz Skrlj, Senja Pollak:
E8-IJS@LT-EDI-ACL2022 - BERT, AutoML and Knowledge-graph backed Detection of Depression. 251-257 - Debora Nozza
:
Nozza@LT-EDI-ACL2022: Ensemble Modeling for Homophobia and Transphobia Detection. 258-264 - Morteza Janatdoust, Fatemeh Ehsani-Besheli, Hossein Zeinali:
KADO@LT-EDI-ACL2022: BERT-based Ensembles for Detecting Signs of Depression from Social Media Text. 265-269 - Ishan Sanjeev Upadhyay, K. V. Aditya Srivatsa, Radhika Mamidi:
Sammaan@LT-EDI-ACL2022: Ensembled Transformers Against Homophobia and Transphobia. 270-275 - Rafal Poswiata, Michal Perelkiewicz:
OPI@LT-EDI-ACL2022: Detecting Signs of Depression from Social Media Text using RoBERTa Pre-trained Language Models. 276-282 - Filip Nilsson, György Kovács:
FilipN@LT-EDI-ACL2022-Detecting signs of Depression from Social Media: Examining the use of summarization methods as data augmentation for text classification. 283-286 - Nsrin Ashraf
, Mohamed Taha, Ahmed Abd El-Fattah, Hamada A. Nayel
:
NAYEL @LT-EDI-ACL2022: Homophobia/Transphobia Detection for Equality, Diversity, and Inclusion using SVM. 287-290 - Harshul Surana, Basavraj Chinagundi:
giniUs @LT-EDI-ACL2022: Aasha: Transformers based Hope-EDI. 291-295 - Karun Anantharaman, Angel Suseelan, Rajalakshmi Sivanaiah
, Saritha Madhavan, Sakaya Milton Rajendram:
SSN_MLRG1@LT-EDI-ACL2022: Multi-Class Classification using BERT models for Detecting Depression Signs from Social Media Text. 296-300 - Suman Dowlagar, Radhika Mamidi:
DepressionOne@LT-EDI-ACL2022: Using Machine Learning with SMOTE and Random UnderSampling to Detect Signs of Depression on Social Media Text. 301-305 - Arianna Muti, Marta Marchiori Manerba, Katerina Korre, Alberto Barrón-Cedeño:
LeaningTower@LT-EDI-ACL2022: When Hope and Hate Collide. 306-311 - Asha Hegde, Sharal Coelho, Ahmad Elyas Dashti, Hosahalli Lakshmaiah Shashirekha:
MUCS@Text-LT-EDI@ACL 2022: Detecting Sign of Depression from Social Media Text using Supervised Learning Approach. 312-316 - Dhanya Srinivasan, Bharathi B, Thenmozhi Durairaj, Senthil Kumar B:
SSNCSE_NLP@LT-EDI-ACL2022: Speech Recognition for Vulnerable Individuals in Tamil using pre-trained XLSR models. 317-320 - Deepanshu Khanna, Muskaan Singh, Petr Motlícek:
IDIAP_TIET@LT-EDI-ACL2022 : Hope Speech Detection in Social Media using Contextualized BERT with Attention Mechanism. 321-325 - Adarsh S., Betina Antony:
SSN@LT-EDI-ACL2022: Transfer Learning using BERT for Detecting Signs of Depression from Social Media Texts. 326-330 - Kayalvizhi S, Thenmozhi Durairaj, Bharathi Raja Chakravarthi, Jerin Mahibha C:
Findings of the Shared Task on Detecting Signs of Depression from Social Media. 331-338 - Bharathi B, Bharathi Raja Chakravarthi, Subalalitha Chinnaudayar Navaneethakrishnan, Sripriya N, Arunaggiri Pandian
, Swetha Valli:
Findings of the Shared Task on Speech Recognition for Vulnerable Individuals in Tamil. 339-345 - Muskaan Singh, Petr Motlícek:
IDIAP Submission@LT-EDI-ACL2022 : Hope Speech Detection for Equality, Diversity and Inclusion. 350-355 - Muskaan Singh, Petr Motlícek:
IDIAP Submission@LT-EDI-ACL2022: Homophobia/Transphobia Detection in social media comments. 356-361 - Muskaan Singh, Petr Motlícek:
IDIAP Submission@LT-EDI-ACL2022: Detecting Signs of Depression from Social Media Text. 362-368 - Bharathi Raja Chakravarthi, Ruba Priyadharshini, Thenmozhi Durairaj, John P. McCrae, Paul Buitelaar, Prasanna Kumar Kumaresan, Rahul Ponnusamy:
Overview of The Shared Task on Homophobia and Transphobia Detection in Social Media Comments. 369-377 - Bharathi Raja Chakravarthi, Vigneshwaran Muralidaran, Ruba Priyadharshini, Subalalitha Chinnaudayar Navaneethakrishnan, John P. McCrae, Miguel Ángel García, Salud María Jiménez-Zafra, Rafael Valencia-García, Prasanna Kumar Kumaresan, Rahul Ponnusamy, Daniel García-Baena
, José Antonio García-Díaz:
Overview of the Shared Task on Hope Speech Detection for Equality, Diversity, and Inclusion. 378-388
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.