@inproceedings{khanna-etal-2022-idiap,
title = "{IDIAP}{\_}{TIET}@{LT}-{EDI}-{ACL}2022 : Hope Speech Detection in Social Media using Contextualized {BERT} with Attention Mechanism",
author = "Khanna, Deepanshu and
Singh, Muskaan and
Motlicek, Petr",
editor = "Chakravarthi, Bharathi Raja and
Bharathi, B and
McCrae, John P and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ltedi-1.49",
doi = "10.18653/v1/2022.ltedi-1.49",
pages = "321--325",
abstract = "With the increase of users on social media platforms, manipulating or provoking masses of people has become a piece of cake. This spread of hatred among people, which has become a loophole for freedom of speech, must be minimized. Hence, it is essential to have a system that automatically classifies the hatred content, especially on social media, to take it down. This paper presents a simple modular pipeline classifier with BERT embeddings and attention mechanism to classify hope speech content in the Hope Speech Detection shared task for Equality, Diversity, and Inclusion-ACL 2022. Our system submission ranks fourth with an F1-score of 0.84. We release our code-base here \url{https://github.com/Deepanshu-beep/hope-speech-attention} .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khanna-etal-2022-idiap">
<titleInfo>
<title>IDIAP_TIET@LT-EDI-ACL2022 : Hope Speech Detection in Social Media using Contextualized BERT with Attention Mechanism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deepanshu</namePart>
<namePart type="family">Khanna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muskaan</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Motlicek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the increase of users on social media platforms, manipulating or provoking masses of people has become a piece of cake. This spread of hatred among people, which has become a loophole for freedom of speech, must be minimized. Hence, it is essential to have a system that automatically classifies the hatred content, especially on social media, to take it down. This paper presents a simple modular pipeline classifier with BERT embeddings and attention mechanism to classify hope speech content in the Hope Speech Detection shared task for Equality, Diversity, and Inclusion-ACL 2022. Our system submission ranks fourth with an F1-score of 0.84. We release our code-base here https://github.com/Deepanshu-beep/hope-speech-attention .</abstract>
<identifier type="citekey">khanna-etal-2022-idiap</identifier>
<identifier type="doi">10.18653/v1/2022.ltedi-1.49</identifier>
<location>
<url>https://aclanthology.org/2022.ltedi-1.49</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>321</start>
<end>325</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IDIAP_TIET@LT-EDI-ACL2022 : Hope Speech Detection in Social Media using Contextualized BERT with Attention Mechanism
%A Khanna, Deepanshu
%A Singh, Muskaan
%A Motlicek, Petr
%Y Chakravarthi, Bharathi Raja
%Y Bharathi, B.
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F khanna-etal-2022-idiap
%X With the increase of users on social media platforms, manipulating or provoking masses of people has become a piece of cake. This spread of hatred among people, which has become a loophole for freedom of speech, must be minimized. Hence, it is essential to have a system that automatically classifies the hatred content, especially on social media, to take it down. This paper presents a simple modular pipeline classifier with BERT embeddings and attention mechanism to classify hope speech content in the Hope Speech Detection shared task for Equality, Diversity, and Inclusion-ACL 2022. Our system submission ranks fourth with an F1-score of 0.84. We release our code-base here https://github.com/Deepanshu-beep/hope-speech-attention .
%R 10.18653/v1/2022.ltedi-1.49
%U https://aclanthology.org/2022.ltedi-1.49
%U https://doi.org/10.18653/v1/2022.ltedi-1.49
%P 321-325
Markdown (Informal)
[IDIAP_TIET@LT-EDI-ACL2022 : Hope Speech Detection in Social Media using Contextualized BERT with Attention Mechanism](https://aclanthology.org/2022.ltedi-1.49) (Khanna et al., LTEDI 2022)
ACL