default search action
Brenden M. Lake
Person information
- affiliation: New York University, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j4]A. Emin Orhan, Brenden M. Lake:
Learning high-level visual representations from a child's perspective without strong inductive biases. Nat. Mac. Intell. 6(3): 271-283 (2024) - [i40]A. Emin Orhan, Wentao Wang, Alex N. Wang, Mengye Ren, Brenden M. Lake:
Self-supervised learning of video representations from a child's perspective. CoRR abs/2402.00300 (2024) - [i39]Sreejan Kumar, Raja Marjieh, Byron Zhang, Declan Campbell, Michael Y. Hu, Umang Bhatt, Brenden M. Lake, Thomas L. Griffiths:
Comparing Abstraction in Humans and Large Language Models Using Multimodal Serial Reproduction. CoRR abs/2402.03618 (2024) - [i38]Yulu Qin, Wentao Wang, Brenden M. Lake:
A systematic investigation of learnability from single child linguistic input. CoRR abs/2402.07899 (2024) - [i37]Yanli Zhou, Brenden M. Lake, Adina Williams:
Compositional learning of functions in humans and machines. CoRR abs/2403.12201 (2024) - [i36]Ryan Teehan, Brenden M. Lake, Mengye Ren:
CoLLEGe: Concept Embedding Generation for Large Language Models. CoRR abs/2403.15362 (2024) - [i35]Guy Davidson, Graham Todd, Julian Togelius, Todd M. Gureckis, Brenden M. Lake:
Goals as Reward-Producing Programs. CoRR abs/2405.13242 (2024) - [i34]Michael A. Lepori, Alexa R. Tartaglini, Wai Keen Vong, Thomas Serre, Brenden M. Lake, Ellie Pavlick:
Beyond the Doors of Perception: Vision Transformers Represent Relations Between Objects. CoRR abs/2406.15955 (2024) - [i33]Solim LeGris, Wai Keen Vong, Brenden M. Lake, Todd M. Gureckis:
H-ARC: A Robust Estimate of Human Performance on the Abstraction and Reasoning Corpus Benchmark. CoRR abs/2409.01374 (2024) - 2023
- [j3]Brenden M. Lake, Marco Baroni:
Human-like systematic generalization through a meta-learning neural network. Nat. 623(7985): 115-121 (2023) - [i32]A. Emin Orhan, Brenden M. Lake:
What can generic neural networks learn from a child's visual experience? CoRR abs/2305.15372 (2023) - [i31]Yanli Zhou, Reuben Feinman, Brenden M. Lake:
Compositional diversity in visual concept learning. CoRR abs/2305.19374 (2023) - [i30]Alexa R. Tartaglini, Sheridan Feucht, Michael A. Lepori, Wai Keen Vong, Charles Lovering, Brenden M. Lake, Ellie Pavlick:
Deep Neural Networks Can Learn Generalizable Same-Different Visual Relations. CoRR abs/2310.09612 (2023) - 2022
- [j2]Wai Keen Vong, Brenden M. Lake:
Cross-Situational Word Learning With Multimodal Neural Networks. Cogn. Sci. 46(4) (2022) - [c45]Guy Davidson, Todd M. Gureckis, Brenden M. Lake:
Creativity, Compositionality, and Common Sense in Human Goal Generation. CogSci 2022 - [c44]Itay Itzhak, Koustuv Sinha, Brenden M. Lake, Adina Williams, Dieuwke Hupkes:
Evaluating locality in NMT models. CogSci 2022 - [c43]Laura Ruis, Brenden M. Lake:
Improving Systematic Generalization Through Modularity and Augmentation. CogSci 2022 - [c42]Alexa R. Tartaglini, Wai Keen Vong, Brenden M. Lake:
A Developmentally-Inspired Examination of Shape versus Texture Bias in Machines. CogSci 2022 - [c41]Wai Keen Vong, Brenden M. Lake:
Categorising images by generating natural language rules. CogSci 2022 - [i29]Alexa R. Tartaglini, Wai Keen Vong, Brenden M. Lake:
A Developmentally-Inspired Examination of Shape versus Texture Bias in Machines. CoRR abs/2202.08340 (2022) - [i28]Laura Ruis, Brenden M. Lake:
Improving Systematic Generalization Through Modularity and Augmentation. CoRR abs/2202.10745 (2022) - 2021
- [c40]Guy Davidson, Brenden M. Lake:
Examining Infant Relation Categorization Through Deep Neural Networks. CogSci 2021 - [c39]Aysja Johnson, Wai Keen Vong, Brenden M. Lake, Todd M. Gureckis:
Fast and Flexible: Human program induction in abstract reasoning tasks. CogSci 2021 - [c38]Eliza Kosoy, Masha Belyi, Charlie Snell, Brenden M. Lake, Josh Tenenbaum, Alison Gopnik:
The Omniglot Jr. challenge; Can a model achieve child-level character generation and classification? CogSci 2021 - [c37]Gala Stojnic, Kanishk Gandhi, Brenden M. Lake, Moira R. Dillon:
Evaluating infants' reasoning about agents using the Baby Intuitions Benchmark (BIB). CogSci 2021 - [c36]Alexa R. Tartaglini, Wai Keen Vong, Brenden M. Lake:
Modeling artificial category learning from pixels: Revisiting Shepard, Hovland, and Jenkins (1961) with deep neural networks. CogSci 2021 - [c35]Ziyun Wang, Brenden M. Lake:
Modeling Question Asking Using Neural Program Generation. CogSci 2021 - [c34]Reuben Feinman, Brenden M. Lake:
Learning Task-General Representations with Generative Neuro-Symbolic Modeling. ICLR 2021 - [c33]Ramakrishna Vedantam, Arthur Szlam, Maximilian Nickel, Ari Morcos, Brenden M. Lake:
CURI: A Benchmark for Productive Concept Learning Under Uncertainty. ICML 2021: 10519-10529 - [c32]Kanishk Gandhi, Gala Stojnic, Brenden M. Lake, Moira R. Dillon:
Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others. NeurIPS 2021: 9963-9976 - [c31]Maxwell I. Nye, Michael Henry Tessler, Joshua B. Tenenbaum, Brenden M. Lake:
Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning. NeurIPS 2021: 25192-25204 - [i27]Kanishk Gandhi, Gala Stojnic, Brenden M. Lake, Moira R. Dillon:
Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others. CoRR abs/2102.11938 (2021) - [i26]Aysja Johnson, Wai Keen Vong, Brenden M. Lake, Todd M. Gureckis:
Fast and flexible: Human program induction in abstract reasoning tasks. CoRR abs/2103.05823 (2021) - [i25]Yanli Zhou, Brenden M. Lake:
Flexible Compositional Learning of Structured Visual Concepts. CoRR abs/2105.09848 (2021) - [i24]Maxwell I. Nye, Michael Henry Tessler, Joshua B. Tenenbaum, Brenden M. Lake:
Improving Coherence and Consistency in Neural Sequence Models with Dual-System, Neuro-Symbolic Reasoning. CoRR abs/2107.02794 (2021) - 2020
- [c30]Guy Davidson, Brenden M. Lake:
Investigating Simple Object Representations in Model-Free Deep Reinforcement Learning. CogSci 2020 - [c29]Reuben Feinman, Brenden M. Lake:
Generating new concepts with hybrid neuro-symbolic models. CogSci 2020 - [c28]Arihant Jain, Brenden M. Lake, Todd M. Gureckis:
Extending the Rogers and McClelland Model of Semantic Cognition (2003) to work with Raw Pixel Information. CogSci 2020 - [c27]Wai Keen Vong, Brenden M. Lake:
Learning word-referent mappings and concepts from raw inputs. CogSci 2020 - [c26]Kanishk Gandhi, Brenden M. Lake:
Mutual exclusivity as a challenge for deep neural networks. NeurIPS 2020 - [c25]Maxwell I. Nye, Armando Solar-Lezama, Josh Tenenbaum, Brenden M. Lake:
Learning Compositional Rules via Neural Program Synthesis. NeurIPS 2020 - [c24]A. Emin Orhan, Vaibhav V. Gupta, Brenden M. Lake:
Self-supervised learning through the eyes of a child. NeurIPS 2020 - [c23]Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, Brenden M. Lake:
A Benchmark for Systematic Generalization in Grounded Language Understanding. NeurIPS 2020 - [i23]Guy Davidson, Brenden M. Lake:
Investigating Simple Object Representations in Model-Free Deep Reinforcement Learning. CoRR abs/2002.06703 (2020) - [i22]Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, Brenden M. Lake:
A Benchmark for Systematic Generalization in Grounded Language Understanding. CoRR abs/2003.05161 (2020) - [i21]Maxwell I. Nye, Armando Solar-Lezama, Joshua B. Tenenbaum, Brenden M. Lake:
Learning Compositional Rules via Neural Program Synthesis. CoRR abs/2003.05562 (2020) - [i20]Wai Keen Vong, Brenden M. Lake:
Learning word-referent mappings and concepts from raw inputs. CoRR abs/2003.05573 (2020) - [i19]Reuben Feinman, Brenden M. Lake:
Generating new concepts with hybrid neuro-symbolic models. CoRR abs/2003.08978 (2020) - [i18]Reuben Feinman, Brenden M. Lake:
Learning Task-General Representations with Generative Neuro-Symbolic Modeling. CoRR abs/2006.14448 (2020) - [i17]A. Emin Orhan, Vaibhav V. Gupta, Brenden M. Lake:
Self-supervised learning through the eyes of a child. CoRR abs/2007.16189 (2020) - [i16]Brenden M. Lake, Gregory L. Murphy:
Word meaning in minds and machines. CoRR abs/2008.01766 (2020) - [i15]Ramakrishna Vedantam, Arthur Szlam, Maximilian Nickel, Ari Morcos, Brenden M. Lake:
CURI: A Benchmark for Productive Concept Learning Under Uncertainty. CoRR abs/2010.02855 (2020)
2010 – 2019
- 2019
- [c22]Brenden M. Lake, Tal Linzen, Marco Baroni:
Human few-shot learning of compositional instructions. CogSci 2019: 611-617 - [c21]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Asking goal-oriented questions and learning from answers. CogSci 2019: 981-986 - [c20]Reuben Feinman, Brenden M. Lake:
Learning a smooth kernel regularizer for convolutional neural networks. CogSci 2019: 1710-1716 - [c19]Brenden M. Lake:
Compositional generalization through meta sequence-to-sequence learning. NeurIPS 2019: 9788-9798 - [i14]Brenden M. Lake, Tal Linzen, Marco Baroni:
Human few-shot learning of compositional instructions. CoRR abs/1901.04587 (2019) - [i13]Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum:
The Omniglot Challenge: A 3-Year Progress Report. CoRR abs/1902.03477 (2019) - [i12]Reuben Feinman, Brenden M. Lake:
Learning a smooth kernel regularizer for convolutional neural networks. CoRR abs/1903.01882 (2019) - [i11]Brenden M. Lake, Steven T. Piantadosi:
People infer recursive visual concepts from just a few examples. CoRR abs/1904.08034 (2019) - [i10]Brenden M. Lake:
Compositional generalization through meta sequence-to-sequence learning. CoRR abs/1906.05381 (2019) - [i9]A. Emin Orhan, Brenden M. Lake:
Improving the robustness of ImageNet classifiers using elements of human visual cognition. CoRR abs/1906.08416 (2019) - [i8]Kanishk Gandhi, Brenden M. Lake:
Mutual exclusivity as a challenge for neural networks. CoRR abs/1906.10197 (2019) - [i7]Ziyun Wang, Brenden M. Lake:
Modeling question asking using neural program generation. CoRR abs/1907.09899 (2019) - 2018
- [c18]Reuben Feinman, Brenden M. Lake:
Learning Inductive Biases with Simple Neural Networks. CogSci 2018 - [c17]João Loula, Marco Baroni, Brenden M. Lake:
Rearranging the Familiar: Testing Compositional Generalization in Recurrent Networks. BlackboxNLP@EMNLP 2018: 108-114 - [c16]Brenden M. Lake, Marco Baroni:
Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks. ICML 2018: 2879-2888 - [i6]Reuben Feinman, Brenden M. Lake:
Learning Inductive Biases with Simple Neural Networks. CoRR abs/1802.02745 (2018) - [i5]João Loula, Marco Baroni, Brenden M. Lake:
Rearranging the Familiar: Testing Compositional Generalization in Recurrent Networks. CoRR abs/1807.07545 (2018) - 2017
- [c15]Eliza Kosoy, Brenden M. Lake, Josh Tenenbaum:
One-shot Learning and Classification in Children. CogSci 2017 - [c14]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Progress in building a machine that can ask interesting and informative questions. CogSci 2017 - [c13]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Question Asking as Program Generation. NIPS 2017: 1046-1055 - [i4]Brenden M. Lake, Marco Baroni:
Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks. CoRR abs/1711.00350 (2017) - [i3]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Question Asking as Program Generation. CoRR abs/1711.06351 (2017) - 2016
- [c12]Alexander Cohen, Brenden M. Lake:
Searching large hypothesis spaces by asking questions. CogSci 2016 - [c11]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Asking and evaluating natural language questions. CogSci 2016 - [i2]Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, Samuel J. Gershman:
Building Machines That Learn and Think Like People. CoRR abs/1604.00289 (2016) - [i1]Brenden M. Lake, Neil D. Lawrence, Joshua B. Tenenbaum:
The Emergence of Organizing Structure in Conceptual Representation. CoRR abs/1611.09384 (2016) - 2015
- [c10]Brenden M. Lake, Wojciech Zaremba, Rob Fergus, Todd M. Gureckis:
Deep Neural Networks Predict Category Typicality Ratings for Images. CogSci 2015 - [c9]Anselm Rothe, Brenden M. Lake, Todd M. Gureckis:
Asking useful questions: Active learning with rich queries. CogSci 2015 - [c8]Mathew Monfort, Brenden M. Lake, Brian D. Ziebart, Patrick Lucey, Joshua B. Tenenbaum:
Softstar: Heuristic-Guided Probabilistic Inference. NIPS 2015: 2764-2772 - 2014
- [c7]Patricia Angie Chan, Douglas Markant, Brenden M. Lake, Todd M. Gureckis:
Adaptive teaching: Improving the efficiency of learning through hypothesis-dependent selection of training data. CogSci 2014 - [c6]Brenden M. Lake, Chia-ying Lee, James R. Glass, Joshua B. Tenenbaum:
One-shot learning of generative speech concepts. CogSci 2014 - [c5]Brenden M. Lake, Josh Tenenbaum:
Computational Creativity: Generating new objects with a hierarchical Bayesian model. CogSci 2014 - 2013
- [c4]Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum:
One-shot learning by inverting a compositional causal process. NIPS 2013: 2526-2534 - 2012
- [c3]Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum:
Concept learning as motor program induction: A large-scale empirical study. CogSci 2012 - 2011
- [c2]Brenden M. Lake, James L. McClelland:
Estimating the strength of unlabeled information during semi-supervised learning. CogSci 2011 - [c1]Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, Joshua B. Tenenbaum:
One shot learning of simple visual concepts. CogSci 2011
2000 – 2009
- 2009
- [j1]Brenden M. Lake, Gautam K. Vallabha, James L. McClelland:
Modeling Unsupervised Perceptual Category Learning. IEEE Trans. Auton. Ment. Dev. 1(1): 35-43 (2009)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint